Skip to main content
Log in

A Pulsed EPR and DFT Investigation of the Stabilization of Coordinated Phenoxyl Radicals in a Series of Cobalt Schiff-Base Complexes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We recently demonstrated how the aerobic addition of acetic acid to N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino CoII, [Co(1)], leads to the formation of an unusual coordinated CoIII-phenoxyl radical. In this work, some of the structural aspects associated with the Schiff-base-derived ligand (1) that are crucial for the acid-mediated formation of the phenoxyl radical are investigated. For comparison with [Co(1)], we therefore studied the influence of acetic acid on two complexes: (1) the N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-ethane-diamino CoII complex, [Co(2)], that lacks the cyclohexyl group of [Co(1)], and (2) the N′-disalicylidene-ethylenediamine CoII salen complex, [Co(3)], that lacks both the tertiary butyl groups and the cyclohexyl groups. It is shown that the cyclohexyl group of [Co(1)] is not involved in the formation or stabilization of the phenoxyl radical, whereas the tertiary butyl groups of [Co(1)] play a crucial role. In addition, the characteristics of the phenoxyl radical, formed after aerobic addition of acetic acid to [Co(2)], are analyzed in detail by pulsed electron paramagnetic resonance, in combination with isotopic labeling. The experimental data are compared to density functional theory computations and to previous data on the acid-mediated phenoxyl radical of [Co(1)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.D. Borman, C.G. Saysell, A. Sokolowski, M.B. Twitchett, C. Wright, A.G. Sykes, Coord. Chem. Rev. 192, 771–779 (1999)

    Article  Google Scholar 

  2. M.M. Whittaker, J.W. Whittaker, J. Biol. Chem. 263, 6074–6080 (1988)

    Google Scholar 

  3. P. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 50, 151–216 (2001)

    Article  Google Scholar 

  4. B.A. Jazdzewski, W.B. Tolman, Coord. Chem. Rev. 200, 633–685 (2000)

    Article  Google Scholar 

  5. K. Ray, T. Petrenko, K. Wieghardt, F. Neese, Dalton Trans. 1552–1566 (2007)

  6. A. Sokolowski, B. Adam, T. Weyhermuller, A. Kikuchi, K. Hildenbrand, R. Schnepf, P. Hildebrandt, E. Bill, K. Wieghardt, Inorg. Chem. 36, 3702–3710 (1997)

    Article  Google Scholar 

  7. M. Baumgarten, PhD Thesis, Freie Universität Berlin, Berlin, Germany (1988)

  8. C. Canevali, M. Orlandi, L. Pardi, B. Rindone, R. Scotti, J. Sipila, F. Morazzoni, J. Chem. Soc. Dalton Trans. 15, 3007–3014 (2002)

    Google Scholar 

  9. E. Vinck, D.M. Murphy, I.A. Fallis, R.R. Strevens, S. Van Doorslaer, Inorg. Chem., submitted (2009)

  10. Y. Shimazaki, F. Tani, K. Fukui, Y. Naruta, O. Yamauchi, J. Am. Chem. Soc. 125, 10512–10513 (2003)

    Article  Google Scholar 

  11. L. Benisvy, R. Kannappan, Y.F. Song, S. Milikisyants, M. Huber, I. Mutikainen, U. Turpeinen, P. Gamez, L. Bernasconi, E.J. Baerends, F. Hartl, Reedijk, J. Eur. J. Inorg. Chem. 637–642 (2007)

  12. Y. Shimazaki, T. Yajima, F. Tani, S. Karasawa, K. Fukui, Y. Naruta, O. Yamauchi, J. Am. Chem. Soc. 129, 2559–2568 (2007)

    Article  Google Scholar 

  13. T. Storr, E.C. Wasinger, R.C. Pratt, T.D.P. Stack, Angew. Chem. Int. Ed. 46, 5198–5201 (2007)

    Article  Google Scholar 

  14. J. Muller, A. Kikuchi, E. Bill, T. Weyhermuller, P. Hildebrandt, L. Ould-Mouse, K. Wieghardt, Inorg. Chim. Acta 297, 265–277 (2000)

    Article  Google Scholar 

  15. I.A. Fallis, D.M. Murphy, D.J. Willock, R.J. Tucker, R.D. Farley, R. Jenkins, R.R. Strevens, J. Am. Chem. Soc. 126, 15660–15661 (2004)

    Article  Google Scholar 

  16. M. Tokunaga, J.F. Larrow, F. Kakiuchi, E.N. Jacobsen, Science 277, 936–938 (1997)

    Article  Google Scholar 

  17. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University press, Oxford, 2001)

    Google Scholar 

  18. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279–282 (1986)

    Article  ADS  Google Scholar 

  19. Z.L. Madi, S. Van Doorslaer, A. Schweiger, J. Magn. Reson. 154, 181–191 (2002)

    Article  ADS  Google Scholar 

  20. F. Neese, J. Chem. Phys. 115, 11080–11096 (2001)

    Article  ADS  Google Scholar 

  21. F. Neese, J. Phys. Chem. A 105, 4290–4299 (2001)

    Article  Google Scholar 

  22. F. Neese, J. Chem. Phys. 118, 3939–3948 (2003)

    Article  ADS  Google Scholar 

  23. F. Neese, J. Chem. Phys. 122, 34107 (2005)

    Article  ADS  Google Scholar 

  24. K. Ray, A. Begum, T. Weyhermuller, S. Piligkos, J. van Slageren, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 127, 4403–4415 (2005)

    Article  Google Scholar 

  25. A. Schafer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571–2577 (1992)

    Article  ADS  Google Scholar 

  26. J.D. Dill, J.A. Pople, J. Chem. Phys. 62, 2921–2923 (1975)

    Article  ADS  Google Scholar 

  27. W.J. Hehre, R. Ditchfie, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  ADS  Google Scholar 

  28. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650–654 (1980)

    Article  ADS  Google Scholar 

  29. Barone, V., in Recent Advances in Density Functional Methods, ed. by D.P. Chong (World Scientific Publ. Co., Singapore, 1996), p. 287

  30. E.-I. Ochiai, J. Inorg. Nucl. Chem. 34, 1727 (1973)

    Article  MathSciNet  Google Scholar 

  31. E. Vinck, S. Van Doorslaer, D.M. Murphy, I.A. Fallis, Chem. Phys. Lett. 464, 31–37 (2008)

    Article  ADS  Google Scholar 

  32. C. Daul, C.W. Schläpfer, A. von Zelewsky, Struct. Bonding 36, 129–171 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Fund of Scientific Research-Flanders (FWO) (Project G.0312.05N to S.V.D.). E.V. is a research assistant of the FWO. D.M.M. and I.A.F. acknowledge the support of Engineering and Physical Sciences Research Council (EP/E030122). It should be noted that we first made the link between the interpretation of the 8-line EPR spectrum observed in acetic acid activated [Co(1)] and the formation of phenoxyl radicals through the early studies of M. Baumgarten and W. Lubitz on reactions of CoII salen with phenols. It is therefore a pleasure to present here some of our results on this topic in honor of Wolfgang Lubitz’ 60th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Doorslaer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinck, E., Murphy, D.M., Fallis, I.A. et al. A Pulsed EPR and DFT Investigation of the Stabilization of Coordinated Phenoxyl Radicals in a Series of Cobalt Schiff-Base Complexes. Appl Magn Reson 37, 289–303 (2010). https://doi.org/10.1007/s00723-009-0059-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0059-6

Keywords

Navigation