Skip to main content
Log in

Generalized fly-pollination in Ceropegia ampliata (Apocynaceae–Asclepiadoideae): the role of trapping hairs in pollen export and receipt

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Flowers of most species in the genus Ceropegia have elaborate adaptations to trap pollinating flies. Flies are trapped within a bulbous base of the flower after moving through an elongated corolla tube that is frequently lined with stiff hairs. When these hairs wilt after several days, insects held in the bulbous chamber at the base of the corolla tube are released. Despite such complex adaptations for trapping pollinators, key aspects of the pollination ecology including the identity of pollinators, presence or absence of nectar rewards, duration of pollinator trapping, and pollination success remain undescribed for most Ceropegia species. Importantly, no studies have empirically tested the role that trapping hairs may have on pollen export and receipt. We documented the pollination biology of Ceropegia ampliata in two natural populations and found that C. ampliata can be regarded as a generalist, being pollinated by flies from at least four families (Tachinidae, Sarcophagidae, Muscidae, and Lauxaniidae). The duration of the trapping phase lasted 2–5 days and flowers produce small quantities of nectar. Pollination success was highly variable but generally low with occasional peaks suggesting that flies are likely to visit this species sporadically. Flowers that had already proceeded beyond the trapping phase generally had a significantly greater number of pollinaria removed than flowers that were still in the trapping phase, probably reflecting the longer exposure to pollinators. In contrast we found no differences in pollinarium removal between flowers with trapping hairs present and flowers with hairs experimentally disabled. The role of trapping hairs in the pollination success of C. ampliata therefore remains uncertain although we propose, on the basis of this experiment, that trapping may be an adaptation to enhance female success through pollen deposition rather than pollen export. Given the low rates of natural pollen deposition, an experiment with a large number of replicates is required to test this hypothesis in Ceropegia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141:205–214

    Article  Google Scholar 

  • Anderson B, Johnson SD (2009) Geographical co-variation and local convergence of flower depth in a guild of fly-pollinated plants. New Phyt 182:533–540

    Article  Google Scholar 

  • Berjano R, de Vega C, Arista M, Ortiz PL, Talavera S (2006) A multi-year study of factors affecting fruit production in Aristolochia paucinervis (Aristolochiaceae). Am J Bot 93:599–606

    Article  PubMed  Google Scholar 

  • Blanco MA, Barboza G (2005) Pseudocopulatory pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by fungus gnats. Ann Bot 95:763–772

    Article  PubMed  Google Scholar 

  • Bruyns PV (2005) Stapeliads of Southern Africa and Madagascar. Umdaus Press, South Africa

    Google Scholar 

  • Burgess KS, Singfield J, Melendez V, Kevan PG (2004) Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Ann Mo Bot Gard 91:346–356

    Google Scholar 

  • Coombs G (2010) Ecology and degree of specialization of South African milkweeds with diverse pollination systems. PhD thesis, Rhodes University, South Africa

  • Coombs G, Peter CI, Johnson SD (2009) A test for Allee effects in the self-incompatible wasp-pollinated milkweed Gomphocarpus physocarpus (Asclepiadoideae). Austral Ecol 34:688–697

    Article  Google Scholar 

  • Coombs G, Peter CI (2010) The invasive ‘mothcatcher’ (Araujia sericifera Brot.; Asclepiadoideae) co-opts native honeybees as its primary pollinator in South Africa. AoB Plants 2010(plq021):1–14

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Article  Google Scholar 

  • Dold AP (2006) Ceropegia macmasteri (Apocynaceae–Asclepiadoideae–Ceropegieae), a new species from Eastern cape, South Africa. S Afr J Bot 72:144–146

    Article  Google Scholar 

  • Dyer RA (1983) Ceropegia, Brachystelma and Riocreuxia in Southern Africa. A.A. Balkema publishers, Rotterdam

    Google Scholar 

  • Elberling H, Olesen JM (1999) The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 22:314–323

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thompson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Griffin AR, Hingston AB, Ohmart CP (2009) Pollinators of Eucalyptus regnans (Myrtaceae), the world’s tallest flowering plants species. Aust J Bot 57:18–25

    Article  Google Scholar 

  • Goldblatt P, Manning JC (2000) The long-proboscid fly-pollination system in Southern Africa. Ann Mo Bot Gard 87:146–170

    Article  Google Scholar 

  • Goldblatt P, Bernhardt P, Vogan P, Manning JC (2004) Pollination by fungus gnats (Diptera: Mycetophilidae) and self-recognition sites in Tolmeia menziesii (Saxifragaceae). Plant Syst Evol 244:55–67

    Article  Google Scholar 

  • Herrera I, Nassar JM (2009) Reproductive and recruitment traits as indicators of the invasive potential of Kalanchoe diagremontiana (Crassulaceae) and Stapelia gigantea (Apocynaceae) in a Neotropical Arid Zone. J Arid Environ 73:978–986

    Article  Google Scholar 

  • Heiduk A, Brake I, Tolasch T, Frank J, Jurgens A, Meve U, Dotterl S (2010) Scent chemistry and pollinator attraction in the deceptive trap flowers of Ceropegia dolichophylla. S Afr J Bot 76:762–769

    Article  CAS  Google Scholar 

  • Hoare DB, Mucina L, Rutherford MC, Vlok JHJ, Euston-Brown DIW, Palmer AR, Powrie LW, Lechmere-Oertel RG, Proches SM, Dold AP, Ward RA (2006) Albany Thicket Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, pp 541–567

    Google Scholar 

  • Jauker F, Wolters V (2008) Hoverflies are efficient pollinators of oilseed rape. Oecologia 156:819–823

    Article  PubMed  Google Scholar 

  • Johnson SD, Neal PR, Harder LD (2005) Pollen fates and the limits on male reproductive success in an orchid population. Biol J Linn Soc 86:175–190

    Article  Google Scholar 

  • Johnson SD, Steiner KE (1994) Efficient pollination of the mass-flowering Cape orchid Disa obtusa Lindl. (Orchidaceae) by Bibio turneri Edwards (Diptera: Bibionidae). Afr Entomol 2:64–66

    Google Scholar 

  • Karuppusamy S, Pullaiah T (2009) Pollination systems and ex-situ fruit set in Ceropegia juncea Wight (Apocynaceae)––an endemic species in India. Acad J Plant Sci 2:242–245

    Google Scholar 

  • Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Mid Nat 127:172–182

    Article  Google Scholar 

  • Knuth P (1905) Handbook of flower pollination: based upon Herman Muller’s work. The fertilization of flowers by insects. Clarendon Press, Oxford

    Google Scholar 

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–468

    Article  Google Scholar 

  • Lehnebag CA, Robertson AW (2004) Pollination ecology of four epiphytic orchids of New Zealand. Ann Bot 93:773–781

    Article  Google Scholar 

  • Masinde PS (2004) Trap-flower pollination in East-African Ceropegia. Int J Trop Insect Sci 24:55–72

    Google Scholar 

  • Mesler MR, Ackerman JD, Lu KL (1980) The effectiveness of fungus gnats as pollinators. Am J Bot 67:564–567

    Article  Google Scholar 

  • Meve U, Liede S (1994) Floral biology and pollination in stapeliads––new results and a literature review. Plant Syst Evol 192:99–116

    Article  Google Scholar 

  • Nepi M (2007) Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer, Netherlands

    Google Scholar 

  • Okuyama Y, Kato M, Murakami N (2004) Pollination by fungus gnats in four species of the genus Mitella (Saxifragaceae). Bot J Linn Soc 144:449–460

    Article  Google Scholar 

  • Oelschlagel B, Gorb S, Wanke S, Neinhuis C (2009) Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). New Phytol 184:988–1002

    Article  PubMed  Google Scholar 

  • Ollerton J, Diaz A (1999) Evidence for stabilizing selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation. Oecologia 119:340–348

    Article  Google Scholar 

  • Ollerton J, Masinde S, Meve U, Picker M, Whittington A (2009) Fly pollination in Ceropegia (Apocynacae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Ann Bot 103:1501–1514

    Article  PubMed  Google Scholar 

  • Pauw A, Stofberg J, Waterman RJ (2009) Flies and flowers in Darwin’s race. Evolution 63:268–279

    Article  PubMed  Google Scholar 

  • Pansarin ER (2008) Reproductive biology and pollination of Govenia utriculata: a syrphid fly orchid pollinated through a pollen-deceptive mechanism. Plant Spec Biol 23:90–96

    Article  Google Scholar 

  • Pellmyr O (1989) The cost of mutualism: Interactions between Trollius europaeus and its pollinating parasites. Oecologia 78:53–59

    Article  Google Scholar 

  • Peter CI, Johnson SD (2006a) Anther cap retention prevents self-pollination by elaterid beetles in the South African orchid Eulophia foliosa. Ann Bot 97:345–355

    Article  PubMed  Google Scholar 

  • Peter CI, Johnson SD (2006b) Doing the twist: a test of Darwin’s cross-pollination hypothesis for pollinarium reconfiguration. Biol Lett 2:65–68

    Article  PubMed  Google Scholar 

  • Peter CI, Johnson SD (2008) Mimics and Magnets: The importance of color and ecological facilitation in floral deception. Ecology 89:1583–1595

    Article  PubMed  Google Scholar 

  • Peter CI, Johnson SD (2009) Reproductive biology of Acrolophia cochlearis (Orchidaceae): Estimating rates of cross-pollination in epidendroid orchids. Ann Bot 104:573–581

    Article  PubMed  Google Scholar 

  • Picker M, Griffiths C, Weaving A (2002) Field guide to insects of South Africa. Struik publishers, Cape Town

    Google Scholar 

  • Pooley E (1998) A field guide to wild flowers: Kwazulu Natal and the Eastern region. Natal flora publications trust, Durban

    Google Scholar 

  • Poppinga S, Koch K, Bohn HF, Barthlott W (2010) Comparative and functional morphology of hierarchically structured anti-adhesive surfaces in carnivorous plants and kettle trap flowers. Funct Plant Biol 37:952–971

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber press, Portland

    Google Scholar 

  • Retief E, Herman PPJ (1997) Plants of the Northern Provinces of South Africa: keys and diagnostic characters. Strelitzia 6. National Botanical Institute, Pretoria South Africa

    Google Scholar 

  • Rulik B, Wanke S, Nuss M, Neinhuis C (2008) Pollination of Arstolochia pallida Willd. (Aristolochiaceae) in the Mediterranean. Flora 203:175–184

    Article  Google Scholar 

  • Sakai S (2002) Aristolochia spp (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534

    Article  PubMed  Google Scholar 

  • Scholtz CH, Holm E (1985) Insects of Southern Africa. Butterworths, Durban

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Rotting smell of dead-horse arum florets. Nature 420:625–626

    Article  PubMed  CAS  Google Scholar 

  • Thien LB, Utech F (1970) The mode of pollination in Habenaria obtusata (Orchidaceae). Am J Bot 57:1031–1035

    Article  Google Scholar 

  • Vogel S (1961) Die Bestäubung der Kesselfallenblüten von Ceropegia. Beitr Biol Pfl 36:159–237

    CAS  Google Scholar 

  • van der Niet T, Jurgens A, Johnson SD (2010) Pollinators, floral morphology and scent chemistry in the Southern African orchid genus Schizochilus. S Afr J Bot 76:726–738

    Article  Google Scholar 

  • Vogel S (1990) The role of scent glands in pollination: on the structure and function of osmophores. Amerind, New Delhi

    Google Scholar 

  • Vogel S, Martens J (2000) A survey of the function of the lethal kettle traps of Arisaema (Araceae), with records of the pollinating fungus gnats from Nepal. Bot J Linn Soc 133:61–100

    Article  Google Scholar 

  • Wackerly DD, Mendenhall W, Scheaffer RL (2002) Mathematical statistics with applications. Duxbury, USA

    Google Scholar 

  • Wyatt R, Broyles SB (1994) Ecology and evolution of reproduction in milkweeds. Annu Rev Ecol Syst 25:423–441

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Henderson foundation, Rhodes University Joint Research Council, for funding, and Ashley Kirk-Spriggs for help with fly identification. Professor Ted Botha is thanked for helping in making microcapillary needles. Thanks to Cara-Jayne Thorne for help in reviewing the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Coombs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coombs, G., Dold, A.P. & Peter, C.I. Generalized fly-pollination in Ceropegia ampliata (Apocynaceae–Asclepiadoideae): the role of trapping hairs in pollen export and receipt. Plant Syst Evol 296, 137–148 (2011). https://doi.org/10.1007/s00606-011-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0483-6

Keywords

Navigation