Skip to main content
Log in

Fasting differentially regulates expression of agouti-related peptide, pro-opiomelanocortin, prepro-orexin, and vasoactive intestinal polypeptide mRNAs in the hypothalamus of Japanese quail

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Research in mammals has established the existence of a neuronal network that lies within the hypothalamus and that regulates energy homeostasis. However, it is unknown whether this system has been evolutionarily conserved. The objective of the present study was therefore to examine the influence of the agouti-related peptide (AGRP), pro-opiomelanocortin (POMC), prepro-orexin, and vasoactive intestinal polypeptide (VIP) genes on energy balance in birds by quantifying the effect of a 24-h fast on their expression in the hypothalamus of the Japanese quail. In situ hybridization revealed strong signals for AGRP and POMC mRNAs in the infundibular nucleus (IN), for prepro-orexin in the lateral hypothalamic area (LHy) and periventricular hypothalamic nucleus, and for VIP in the LHy. POMC mRNA was co-localized with α-melanocyte-stimulating hormone-like immunoreactivity in individual IN neurons. Compared with the ad-libitum-fed state, a 24-h fast resulted in a 2.2-fold increased expression of AGRP mRNA in the IN. However, fasting did not induce changes in POMC, prepro-orexin, or VIP mRNAs. The results suggest an involvement of the central melanocortin system in the regulation of energy balance in birds, as in mammals. In contrast, orexins in birds may be primarily involved in the control of physiological functions other than energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–h.
Fig. 2.
Fig 3.
Fig. 4.
Fig. 5a, b.

Similar content being viewed by others

References

  • Adam CL, Archer ZA, Findlay PA, Thomas L, Marie M (2002) Hypothalamic gene expression in sheep for cocaine- and amphetamine-regulated transcript, pro-opiomelanocortin, neuropeptide Y, agouti-related peptide and leptin receptor and responses to negative energy balance. Neuroendocrinology 75:250–256

    Article  CAS  PubMed  Google Scholar 

  • Archer ZA, Findlay PA, Rhind SM, Mercer JG, Adam CL (2002) Orexin gene expression and regulation by photoperiod in the sheep hypothalamus. Regul Pept 104:41–45

    Article  CAS  PubMed  Google Scholar 

  • Aste N, Viglietti-Panzica C, Fasolo A, Panzica GC (1995). Mapping of neurochemical markers in quail central nervous system: VIP- and SP-like immunoreactivity. J Chem Neuroanat 8:87–102

    Article  CAS  PubMed  Google Scholar 

  • Bagnol D, Lu X-Y, Kaelin CB, Day HEW, Ollmann M, Gantz I, Akil H, Barsh GS, Watson SJ (1999) Anatomy of an endogenous antagonist: relationship between agouti-related protein and proopiomelanocortin in brain. J Neurosci 19:RC26

    CAS  PubMed  Google Scholar 

  • Boswell T, Richardson RD, Seeley RJ, Ramenofsky M, Wingfield JC, Friedman MI, Woods SC (1995) Regulation of food intake by metabolic fuels in white-crowned sparrows. Am J Physiol 269:R1462-R1468

    CAS  PubMed  Google Scholar 

  • Boswell T, Lehman TL, Ramenofsky M (1997) Effect of plasma glucose manipulations on food intake in white-crowned sparrows. Comp Biochem Physiol 118A:721–726

    Article  CAS  Google Scholar 

  • Boswell T, Li Q, Takeuchi S (2002) Neurons expressing neuropeptide Y mRNA in the infundibular hypothalamus of Japanese quail are activated by fasting and co-express agouti-related protein mRNA. Mol Brain Res 100:31–42

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Smith MS, Gold PW, Herkenham M (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52:441–447

    CAS  PubMed  Google Scholar 

  • Broberger C, Hökfelt T (2001) Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiol Behav 74:669–682

    Article  CAS  PubMed  Google Scholar 

  • Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    CAS  PubMed  Google Scholar 

  • Cai XJ, Liu XH, Evans M, Clapham JC, Wilson S, Arch JRS, Morris R, Williams G (2002) Orexins and feeding: special occasions or everyday occurrence? Regul Pept 104:1–9

    Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    CAS  PubMed  Google Scholar 

  • Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan X-M, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nature Genet 26:97–102

    Article  CAS  PubMed  Google Scholar 

  • Cone RD (1999) The central melanocortin system and energy homeostasis. Trends Endocrinol Metab 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    PubMed  Google Scholar 

  • De Lecea L, Kilduff TS, Peyron C, Gao X-B, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS II, Frankel WN, Pol AN van den, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322-327

    PubMed  Google Scholar 

  • Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402:442–459

    CAS  PubMed  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    CAS  PubMed  Google Scholar 

  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    CAS  PubMed  Google Scholar 

  • Friedman-Einat M, Boswell T, Horev G, Girishvarma G, Dunn IC, Talbot RT, Sharp PJ (1999) The chicken leptin gene: has it been cloned? Gen Comp Endocrinol 115:354–363

    Google Scholar 

  • Furuse M, Ando R, Bungo T, Ao R, Shimojo M, Masuda Y (1999) Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci 40:698–700

    Article  CAS  PubMed  Google Scholar 

  • Gerets HHJ, Peeters K, Arckens L, Vandesande F, Berghman LR (2000) Sequence and distribution of pro-opiomelanocortin in the pituitary and the brain of the chicken (Gallus gallus). J Comp Neurol 417:250–262

    Article  CAS  PubMed  Google Scholar 

  • Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL (1997) Overexpression of Agrt leads to obesity in transgenic mice. Nature Genet 17:273–274

    CAS  PubMed  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354

    CAS  PubMed  Google Scholar 

  • Horev G, Einat P, Aharoni T, Eshdat Y, Friedman-Einat M (2000) Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol Cell Endocrinol 162:95–106

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Diano S, Pol AN van den (1999) Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 19:1072–1087

    CAS  PubMed  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang, Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    CAS  PubMed  Google Scholar 

  • Kawakami S-I, Bungo T, Ando R, Ohgushi A, Shimojo M, Masuda Y, Furuse M (2000) Central administration of α-melanocyte stimulating hormone inhibits fasting- and neuropeptide Y-induced feeding in neonatal chicks. Eur J Pharmacol 398:361–364

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus). Johns Hopkins University Press, Baltimore

  • Kuenzel WJ, McCune SK, Talbot RT, Sharp PJ, Hill JM (1997) Sites of gene expression for vasoactive intestinal polypeptide throughout the brain of the chick (Gallus domesticus). J Comp Neurol 381:101–118

    Article  CAS  PubMed  Google Scholar 

  • Mizuno TM, Mobbs CV (1999) Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 140:814–817

    CAS  PubMed  Google Scholar 

  • Morton GJ, Schwartz MW (2001) The NPY/AGRP neuron and energy homeostasis. Int J Obes Relat Metab Disord Suppl 5:S56-S62

    Google Scholar 

  • Mountjoy K, Wong J (1997) Obesity, diabetes and functions for proopiomelanocortin-derived peptides. Mol Cell Endocrinol 128:171–177

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo T, Tanaka M, Nakashima K (2000) Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochim Biophys Acta 1491:303–308

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo T, Boswell T, Lumineau S (2002) Molecular cloning of chicken propro-orexin cDNA and preferential expression in the chicken hypothalamus. Biochim Biophys Acta 1577:476–480

    Article  CAS  PubMed  Google Scholar 

  • Ollmann MM, Wilson BD, Yang Y-K, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, Pol AN van den, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  • Poggioli R, Vergoni AV, Bertolini A (1986) ACTH-(1–24) and α-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides 7:843–846

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Kim MS, Morgan DGA, Small CJ, Edwards CMB, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR (1998) A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139:4428–4431

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    CAS  PubMed  Google Scholar 

  • Sartori DRS, Migliorini RH, Veiga JAS, Moura JL, Kettelhut IC, Linder C (1995) Metabolic adaptations induced by long-term fasting in quails. Comp Biochem Physiol 111A:487–493

    CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Sharp PJ, Sterling RJ, Talbot RT, Huskisson NS (1989) The role of hypothalamic vasoactive intestinal polypeptide in the maintenance of prolactin secretion in incubating bantam hens: observations using passive immunization, radioimmunoassay and immunohistochemistry. J Endocrinol 122:5–13

    CAS  PubMed  Google Scholar 

  • Sherry DF, Mrosovsky N, Hogan J (1980) Weight loss and anorexia during incubation in birds. J Comp Physiol Psychol 94:89–98

    Google Scholar 

  • Strader AD, Schiöth HB, Buntin JD (2003) The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavior. Brain Res 960:112–121

    Article  CAS  PubMed  Google Scholar 

  • Tachibana T, Sugahara K, Ohgushi A, Ando R, Kawakami S-I, Yoshimatsu T, Furuse M (2001) Intracerebroventicular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neurosci Lett 305:131–134

    Article  CAS  PubMed  Google Scholar 

  • Tachibana T, Saito S, Tomonaga S, Takagi T, Saito E-S, Boswell T, Furuse M (2003) Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci Lett 339:203–206

    Article  PubMed  Google Scholar 

  • Takeuchi S, Takahashi S (1998) Melanocortin receptor genes in the chicken tissue distributions. Gen Comp Endocrinol 112:220–231

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Takahashi S (1999) A possible involvement of melanocortin 3 receptor in the regulation of adrenal gland function in the chicken. Biochim Biophys Acta 1448:512–518

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Teshigawara K, Takahashi S (1999) Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene. Biochim Biophys Acta 1450:452–459

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Teshigawara K, Takahashi S (2000) Widespread expression of agouti-related protein (AGRP) in the chicken: a possible involvement of AGRP in regulating peripheral melanocortin systems in the chicken. Biochim Biophys Acta 1496:261–269

    Article  CAS  PubMed  Google Scholar 

  • Teruyama R, Beck MM (2001) Double immunocytochemistry of vasoactive intestinal peptide and cGnRH-I in male quail: photoperiodic effects. Cell Tissue Res 303:403–414

    Article  CAS  PubMed  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458

    CAS  PubMed  Google Scholar 

  • Zheng B, Eng J, Yalow RS (1987) Brain/gut peptides in fed and fasted rats. Endocrinology 120:714–717

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Boswell.

Additional information

This research was supported by a Commonwealth Fellowship to D.P.-S. and a BBSRC Fellowship to T.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips-Singh, D., Li, Q., Takeuchi, S. et al. Fasting differentially regulates expression of agouti-related peptide, pro-opiomelanocortin, prepro-orexin, and vasoactive intestinal polypeptide mRNAs in the hypothalamus of Japanese quail. Cell Tissue Res 313, 217–225 (2003). https://doi.org/10.1007/s00441-003-0755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0755-8

Keywords

Navigation