Skip to main content
Log in

Drag reduction and improvement of material transport in creeping films

  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dinkelacker, A.: On the possibility of drag reduction with the help of longitudinal ridges in the walls. In: Liepmann HW (ed.) Turbulence management and relaminarisation, Proceedings of the IUTAM Symposium, pp. 109–120. Springer, Berlin Heidelberg New York (1988)

  2. Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J Fluid Mech 255, 503–539 (1993)

    Google Scholar 

  3. Goldstein, D., Handler, R., Sirovich, L.: Direct numerical simulation of turbulent flow over a modelled riblet covered surface. J Fluid Mech 302, 33–376 (1995)

    Google Scholar 

  4. Koeltzsch, K., Dinkelacker, A., Grundmann, R.: Flow over convergent and divergent wall riblets. Exp Fluids 33, 346–350 (2002)

    Google Scholar 

  5. Bechert, D.W., Bruse, M., Hage, W., Van der Hoeven J.G.T., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338, 59–87 (2002)

    Google Scholar 

  6. Vogel, S.: Life in Moving Fluids, pp. 153–154. Princeton University Press, Princeton (1996)

  7. Nachtigall, W.: Bionik-Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler, pp. 204–211. Springer, Berlin Heidelberg New York (2002)

  8. Savage, M.D.: Mathematical models for coating processes. J Fluid Mech 117, 443–455 (1982)

    Google Scholar 

  9. Benkreira, H., Patel, R., Edwards, M.F., Wilkinson, W.L.: Classification and analyses of coating flows. J Non-Newtonian Fluid Mech 54, 437–447 (1994)

    Google Scholar 

  10. Wilson, S.K., Duffy, B.R., Davis, S.H.: On a slender dry patch in a liquid film draining under gravity down an inclined plane. Eur J Appl Math 12, 233–252 (2001)

    Google Scholar 

  11. Gaskell, P.H., Jimack, P.K., Sellier, M., Thompson, H.M., Wilson, M.C.T.: Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J Fluid Mech 509, 253–280 (2004)

    Google Scholar 

  12. Zhao, L., Cerro, R.L.: Experimental characterization of viscous film flows over complex surfaces. Int J Multiphase Flow 18(4), 495–516 (1992)

    Google Scholar 

  13. Vlachogiannis, M., Bontozoglou, V.: Experiments on laminar film flow along a periodic wall. J Fluid Mech 457, 133–156 (2002)

    Google Scholar 

  14. Wierschem, A., Scholle, M., Aksel, N.: Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys Fluids 15(2), 426–435 (2003)

    Google Scholar 

  15. Pozrikidis, C.: The flow of a liquid film along a periodic wall. J Fluid Mech 188, 275–300 (1988)

    Google Scholar 

  16. Malamataris, N.A., Bontozoglou, V.: Computer aided analysis of viscous film flow along an inclined wavy wall. J Comput Phys 154(2), 372–392 (1999)

    Google Scholar 

  17. Bontozoglou, V.: Laminar film flow along a periodic wall. CMES 1(2), 133–142 (2000)

    Google Scholar 

  18. Mazouchi, A., Homsy, G.M.: Free surface Stokes flow over topography. Phys Fluids 13, 2751–2761 (2001)

    Google Scholar 

  19. Scholle, M., Wierschem, A., Aksel, N.: Creeping films with vortices over strongly undulated bottoms. Acta Mech 168, 167–193 (2004)

    Google Scholar 

  20. Wierschem, A., Aksel, N.: Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221–237 (2003)

    Google Scholar 

  21. Wierschem, A., Aksel, N.: Hydraulic jumps and standing waves in gravity-driven flows of viscous liquids in wavy open channels. Phys Fluids 16(11), 3868–3877 (2004)

    Google Scholar 

  22. Siegel, M.: Cusp formation for time-evolving bubbles in two-dimensional Stokes flow. J Fluid Mech 412, 227–257 (2000)

    Google Scholar 

  23. Cummings, L.J.: Steady solutions for bubbles in dipole-driven Stokes flows. Phys Fluids 12, 2162–2168 (2000)

    Google Scholar 

  24. Scholle, M.: Creeping Couette flow over an undulated plate. Arch Appl Mech 73, 823–840 (2004)

    Google Scholar 

  25. Ockendon, H., Ockendon, J.R.: Viscous flow. Cambridge University Press, Cambridge (1995)

  26. Schneider, W.: Mathematische Methoden in der Strömungsmechanik. Braunschweig, Vieweg (1978)

  27. Aksel, N.: Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch Appl Mech 70, 81–90 (2000)

    Google Scholar 

  28. Scholle, M., Aksel, N.: An exact solution of visco-capillary flow in an inclined channel. Z Angew Math Phys 52(5), 749–769 (2001)

    Google Scholar 

  29. Scholle, M., Aksel, N.: Thin film limit and film rupture of the visco-capillary gravity-driven channel flow. Z Angew Math Phys 54(3), 517–531 (2003)

    Google Scholar 

  30. Spurk, J.H.: Fluid mechanics. Springer, Heidelberg Berlin New York (1997)

  31. Panton, R.L: Incompressible flow. Wiley Interscience, New York (1996)

  32. Davis, A.M.J.: Periodic blocking in parallel shear or channel flow at low Reynolds number. Phys Fluids A5(4), 800–809 (1992)

    Google Scholar 

  33. Maple 9.5.: registered trademark of Waterloo Maple Inc. (2004)

  34. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J Fluid Mech 18, 1–18 (1964)

    Google Scholar 

  35. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. Dover, New York (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Aksel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholle, M., Rund, A. & Aksel, N. Drag reduction and improvement of material transport in creeping films. Arch Appl Mech 75, 93–112 (2006). https://doi.org/10.1007/s00419-005-0414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-005-0414-5

Keywords

Navigation