Skip to main content
Log in

The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Occludin, an integral protein associated with the mammalian tight junction, has for the first time been identified in the uterus of squamate reptiles. The tight junction is made up of anastamosing strands and forms a selective barrier that regulates paracellular diffusion of solutes across uterine epithelium. Occludin exclusively labels tight junctional strands and is an excellent marker for tight junction permeability. Using western blotting and immunohistochemistry, occludin expression was examined in the uterine epithelium of five species of Australian skinks at different stages of gestation. More occludin was detected during late stage pregnancy/gravidity compared to the lower levels of occludin detected in vitellogenic and post-parturient females in three of the five species. We conclude that the paracellular permeability of the squamate uterine epithelium decreases as gestation progresses. As placental transport of ions and solutes to the embryo is highest during the last third of pregnancy in viviparous squamates, it is likely that a decrease in paracellular permeability is compensated by an upregulation of other transporting mechanisms such as histotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am J Physiol Renal Physiol 287:F305–F318

    Article  PubMed  CAS  Google Scholar 

  • Adams SM, Biazik JM, Thompson MB, Murphy CR (2005) Cyto-epitheliochorial placenta of the viviparous lizard Pseudemoia entrecasteauxii: a new placental morphotype. J Morphol 264:264–276

    Article  PubMed  Google Scholar 

  • Amoroso EC (1952) Placentation. Marshall’s physiology and reproduction. Green and Co., London pp 127–311

    Google Scholar 

  • Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130

    PubMed  CAS  Google Scholar 

  • Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G475

    PubMed  CAS  Google Scholar 

  • Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Matter K (1998) Tight junctions. J Cell Sci 111:541–547

    PubMed  CAS  Google Scholar 

  • Ballard ST, Hunter JH, Taylor AE (1995) Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 15:35–55

    Article  PubMed  CAS  Google Scholar 

  • Blackburn DG (1982) Evolutionary origins of viviparity in the reptilia 1. Sauria. Amphibia Reptilia 3:185–206

    Article  Google Scholar 

  • Blackburn DG (1993) Chorioallantoic placentation in squamate reptiles: structure, function, development, and evolution. J Exp Zool 266:414–430

    Article  Google Scholar 

  • Blackburn DG (2006) Squamate reptiles as model organisms for the evolution of viviparity. Herp Monog 20:131–146

    Article  Google Scholar 

  • Blackburn DG, Lorenz RL (2003) Placentation in garter snakes. II. Transmission EM of the chorioallantoic placenta of Thamnophis radix and T. sirtalis. J Morphol 256:171–186

    Article  PubMed  Google Scholar 

  • Carvalho AB, Dobo BA, Vibranovski MD, Clark AG (2001) Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 98:13225–13230

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh KJ Jr., Oswari J, Margulies SS (2001) Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol 25:584–591

    PubMed  CAS  Google Scholar 

  • Citi S, Cordenonsi M (1998) Tight junction proteins. Biochim Biophys Acta 1448:1–11

    Article  PubMed  CAS  Google Scholar 

  • Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi M, Mazzon E, De Rigo L, Baraldo S, Meggio F, Citi S (1997) Occludin dephosphorylation in early development of Xenopus laevis. J Cell Sci 110:3131–3139

    PubMed  CAS  Google Scholar 

  • Corso G, Delitala GM, Carcupino M (2000) Uterine morphology during the annual cycle in Chalcides ocellatus tiligugu (Gmelin) (Squamata: Scincidae). J Morph 243:153–165

    Article  PubMed  CAS  Google Scholar 

  • DeMaio L, Chang YS, Gardner TW, Tarbell JM, Antonetti DA (2001) Shear stress regulates occludin content and phosphorylation. Am J Physiol Heart Circ Physiol 281:105–113

    Google Scholar 

  • Defaure JP, Hubert J (1961) Table de development de lezard vivipare: lacerta vivipara Jacquin. Arch Anat Micros Morph Exp 50:309–328

    Google Scholar 

  • Fairbairn J, Shine R, Moritz C, Frommer M (1998) Phylogenetic relationships between oviparous and viviparous populations of an Australian lizard (Lerista bougainvillii, scincidae). Mol Phylogenet Evol 10:95–103

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  PubMed  CAS  Google Scholar 

  • Farshori P, Kachar B (1999) Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170:147–156

    Article  PubMed  CAS  Google Scholar 

  • Flemming AF, Branch WR (2001) Extraordinary case of matrotrophy in the African skink Eumecia anchietae. J Morph 247:264–287

    Article  PubMed  CAS  Google Scholar 

  • Friess AE, Sinowatz F, Skolek-Winnisch R, Traautner W (1980) The placenta of the pig. I. Finestructural changes of the placental barrier during pregnancy. Anat Embryol (Berl) 158:179–191

    Article  CAS  Google Scholar 

  • Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    Article  PubMed  CAS  Google Scholar 

  • Greer AE (1989) The Biology and evolution of Australian Lizards. Surrey Beatty and Sons PTY Limited, Sydney

    Google Scholar 

  • Greven H, Robenek H (1980) Intercellular junctions in the uterine epithelium of Salamandra salamandra (L.) (Amphibia, Urodela). A freeze-fracture study. Cell Tiss Res 212:163–172

    CAS  Google Scholar 

  • Grosser O (1927) Fruhentwicklung, eihautbildung und placentation des menschen und der saugetiere. Bergmann JF, Munchen

  • Guillette LJ Jr (1993) The evolution of viviparity in lizards. Bioscience 43:742–751

    Article  Google Scholar 

  • Herbert JF, Lindsay LA, Murphy CR, Thompson MB (2006) Calcium transport across the uterine epithelium of pregnant lizards. Herp Monog 20:205–211

    Article  Google Scholar 

  • Hosie MJ, Adams SM, Thompson MB, Murphy CR (2003) Viviparous lizard, Eulamprus tympanum, shows changes in the uterine surface epithelium during early pregnancy that are similar to the plasma membrane transformation of mammals. J Morph 258:346–357

    Article  PubMed  Google Scholar 

  • Hull BE, Staehelin LA (1976) Functional significance of the variations in the geometrical organization of tight junction networks. J Cell Biol 68:688–704

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Uchida I, Eto K, Kitano T, Abe SI (2007) Size-selective junctional barrier and Ca(2+)-independent cell adhesion in the testis of Cynops pyrrhogaster: expression and function of occludin. Molec Reprod Dev (in press). doi:10.1002/mrd.20662

  • Kaye MD (1971) The evolution of placentation. Aust NZ J Obstet Gyn 11:197–207

    CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Valderrabano V, Kläusli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:1021–1027

    Google Scholar 

  • Luckett WP (1977) Ontogeny of amniote fetal membranes and their application to phylogeny. In: Hecht MK Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York pp 439–516

    Google Scholar 

  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of the tight junction. J Cell Sci 109:2287–2298

    PubMed  CAS  Google Scholar 

  • Morcos Y, Hosie MJ, Bauer HC, Chan-Ling T (2001) Immunolocalization of occludin and claudin-1 to tight junctions in intact CNS vessels of mammalian retina. J Neurocytol 30:107–123

    Article  PubMed  CAS  Google Scholar 

  • Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:1708–1717

    Google Scholar 

  • Murphy CR (1995) The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation. Hum Reprod Update 1:567–580

    Article  PubMed  CAS  Google Scholar 

  • Murphy CR, Swift JG, Need JA, Mukherjee TM, Rogers AW (1982) A freeze-fracture electron microscopic study of tight junctions of epithelial cells in the human uterus. Anat Embryol (Berl) 163:367–370

    Article  CAS  Google Scholar 

  • Orchard MD, Murphy CR (2002) Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat. Acta Histochem 104:149–155

    Article  PubMed  CAS  Google Scholar 

  • Preston AM, Lindsay LA, Murphy CR (2004) Progesterone treatment and the progress of early pregnancy reduce desmoglein 1&2 staining along the lateral plasma membrane in rat uterine epithelial cells. Acta Histochem 106:345–351

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, Tsukita S (1997) Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol 73:222–231

    PubMed  CAS  Google Scholar 

  • Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (1992) Structure, function, and regulation of cellular tight junctions. Am J Physiol 262:647–661

    Google Scholar 

  • Shine R (1983) Reptilian viviparity in cold climates testing the assumptions of an evolutionary hypothesis. Oecologia (Berlin) 57:397–405

    Article  Google Scholar 

  • Shine R, Thompson MB (2006) Did embryonic responses to incubation conditions drive the evolution of reproductive modes in squamate reptiles? Herpetol Monogr 20:159–171

    Article  Google Scholar 

  • Smith SA, Shine R (1997) Intraspecific variation in reproductive mode within the scincid lizard Saiphos equalis. Aust J Zool 45:435–445

    Article  Google Scholar 

  • Staehelin LA (1973) Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786

    PubMed  CAS  Google Scholar 

  • Stewart JR, Thompson MB (1993) A novel pattern of embryonic nutrition in a viviparous reptile. J Exp Biol 174:97–108

    Article  Google Scholar 

  • Stewart JR, Thompson MB (1998) Placental ontogeny of the Australian scincid lizards Niveoscincus coventryi and Pseudemoia spenceri. J Exp Zool 282:535–559

    Article  PubMed  CAS  Google Scholar 

  • Stewart JR, Thompson MB (2000) Evolution of placentation among squamate reptiles: recent research and future directions. Comp Biochem Physiol A Mol Integr Physiol 127A:411–431

    Article  CAS  Google Scholar 

  • Thompson MB, Speake BK, Russell KJ, McCartney RJ (2001) Utilisation of lipids, protein, ions and energy during embryonic development of Australian oviparous skinks in the genus Lampropholis. Comp Biochem Physiol 129A:313–326

    CAS  Google Scholar 

  • Thompson MB, Stewart JR, Speake BK, Hosie MJ, Murphy CR (2002) Evolution of viviparity: what can Australian lizards tell us? Comp Biochem Physiol 131B:631–643

    CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  PubMed  CAS  Google Scholar 

  • Tuan RS, Ono T, Akins RE, Koide M (1991) Experimental studies on cultured shell-less fowl embryos calcium transport skeletal development and cardiovascular functions. In: Deeming DC, Ferguson MWJ (eds) Egg incubation: its effects on embryonic development in birds and reptiles. Cambridge University Press, Cambridge pp 419–433

    Google Scholar 

  • Wade JB, Karnovsky MJ (1974) The structure of the zonula occludens. A single fibril model based on freeze-fracture. J Cell Biol 60:168–180

    Article  PubMed  CAS  Google Scholar 

  • Weekes HC (1935) A review on placentation among reptiles with particular regard to function and evolution of placenta. Proc Linn Soc (Lond) 2:625–645

    Google Scholar 

  • Winterhager E, Mendoza AS (1987) Structure of quick-frozen tight junctions in uterine epithelium of pseudopregnant rabbits. Z Mikrosk Anat Forsch 101:179–185

    PubMed  CAS  Google Scholar 

  • Wong V (1997) Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol 273:1859–1867

    Google Scholar 

  • Yamamoto T, Ozawa H, Nagai H (1985) Histochemical studies of Ca-ATPase, succinate and NAD+-dependent isocitrate dehydrogenases in the shell gland of laying Japanese quails: with special reference to calcium-transporting cells. Histochemistry 83:221–226

    Article  PubMed  CAS  Google Scholar 

  • Yap AS, Mullin JM, Stevenson BR (1998) Molecular analyses of tight junction physiology: insights and paradoxes. J Membr Biol 163:159–167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Skinks were collected with permits from the NSW National Parks and Wildlife Service (S10693) and the work was conducted under University of Sydney Animal Ethics Committee number L04/1-2005/3/4038. We thank the many people who have volunteered in the field and lab, especially, Jacquie Herbert, Jim Stewart, Scott Parker and Trevor Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Biazik.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biazik, J.M., Thompson, M.B. & Murphy, C.R. The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles. J Comp Physiol B 177, 935–943 (2007). https://doi.org/10.1007/s00360-007-0192-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0192-1

Keywords

Navigation