Skip to main content
Log in

Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16–20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)—an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (mm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine—metabolites associated with cell growth—are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76(18):5339–5344. doi:10.1021/ac049692q

    Article  CAS  Google Scholar 

  2. Setou M, Kurabe N (2011) Mass microscopy: high-resolution imaging mass spectrometry. J Electron Microsc 60(1):47–56. doi:10.1093/jmicro/dfq079

    Article  CAS  Google Scholar 

  3. Yang JH, Caprioli RM (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83(14):5728–5734. doi:10.1021/ac200998a

    Article  CAS  Google Scholar 

  4. Rompp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139(6):759–783. doi:10.1007/s00418-013-1097-6

    Article  Google Scholar 

  5. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833. doi:10.1038/nmeth1094

    Article  CAS  Google Scholar 

  6. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643. doi:10.1002/mas.20124

    Article  CAS  Google Scholar 

  7. Burnum KE, Frappier SL, Caprioli RM (2008) Matrix-assisted laser desorption/ionization imaging mass spectrometry for the investigation of proteins and peptides. Annu Rev Anal Chem 1:689–705. doi:10.1146/annurev.anchem.1.031207.112841

    Article  CAS  Google Scholar 

  8. Walch A, Rauser S, Deininger SO, Hofler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130(3):421–434. doi:10.1007/s00418-008-0469-9

    Article  CAS  Google Scholar 

  9. Greer T, Sturm R, Li LJ (2011) Mass spectrometry imaging for drugs and metabolites. J Proteome 74(12):2617–2631. doi:10.1016/j.jprot.2011.03.032

    Article  CAS  Google Scholar 

  10. Watrous JD, Alexandrov T, Dorrestein PC (2011) The evolving field of imaging mass spectrometry and its impact on future biological research. J Mass Spectrom 46(2):209–222. doi:10.1002/jms.1876

    Article  CAS  Google Scholar 

  11. Chaurand P (2012) Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteome 75(16):4883–4892. doi:10.1016/j.jprot.2012.04.005

    Article  CAS  Google Scholar 

  12. Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteome 75(16):4999–5013. doi:10.1016/j.jprot.2012.07.028

    Article  CAS  Google Scholar 

  13. Gode D, Volmer DA (2013) Lipid imaging by mass spectrometry—a review. Analyst 138(5):1289–1315. doi:10.1039/C2AN36337B

    Article  CAS  Google Scholar 

  14. Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32(3):218–243. doi:10.1002/mas.21360

    Article  CAS  Google Scholar 

  15. Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16(7):1093–1099. doi:10.1016/j.jasms.2005.02.026

    Article  CAS  Google Scholar 

  16. Chaurand P, Schwartz SA, Caprioli RM (2004) Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 3(2):245–252. doi:10.1021/pr0341282

    Article  CAS  Google Scholar 

  17. Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprevote O (2007) MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom 260(2–3):158–165. doi:10.1016/j.ijms.2006.09.027

    Article  CAS  Google Scholar 

  18. Seeley EH, Caprioli RM (2008) Imaging mass spectrometry: towards clinical diagnostics. Proteomics Clin Appl 2(10–11):1435–1443. doi:10.1002/prca.200800013

    Article  CAS  Google Scholar 

  19. Eberlin LS, Liu XH, Ferreira CR, Santagata S, Agar NYR, Cooks RG (2011) Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal Chem 83(22):8366–8371. doi:10.1021/ac202016x

    Article  CAS  Google Scholar 

  20. Girod M, Shi YZ, Cheng JX, Cooks RG (2011) Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal Chem 83(1):207–215. doi:10.1021/ac102264z

    Article  CAS  Google Scholar 

  21. Zaima N, Sasaki T, Tanaka H, Cheng XW, Onoue K, Hayasaka T, Goto-Inoue N, Enomoto H, Unno N, Kuzuya M, Setou M (2011) Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis 217(2):427–432. doi:10.1016/j.atherosclerosis.2011.03.044

    Article  CAS  Google Scholar 

  22. Lee YJ, Perdian DC, Song ZH, Yeung ES, Nikolau BJ (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70(1):81–95. doi:10.1111/j.1365-313×.2012.04899.×

    Article  CAS  Google Scholar 

  23. Li Y, Shrestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79(2):523–532. doi:10.1021/ac061577n

    Article  CAS  Google Scholar 

  24. Kaspar S, Peukert M, Svatos A, Matros A, Mock HP (2011) MALDI-imaging mass spectrometry—an emerging technique in plant biology. Proteomics 11(9):1840–1850. doi:10.1002/pmic.201000756

    Article  CAS  Google Scholar 

  25. Lunsford KA, Peter GF, Yost RA (2011) Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in populus tissue. Anal Chem 83(17):6722–6730. doi:10.1021/ac2013527

    Article  CAS  Google Scholar 

  26. Muller T, Oradu S, Ifa DR, Cooks RG, Krautler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83(14):5754–5761. doi:10.1021/ac201123t

    Article  CAS  Google Scholar 

  27. Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Micro 9(9):683–694

    Article  CAS  Google Scholar 

  28. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109(26):E1743–E1752. doi:10.1073/pnas.1203689109

    Article  CAS  Google Scholar 

  29. Lanekoff I, Geydebrekht O, Pinchuk GE, Konopka AE, Laskin J (2013) Spatially resolved analysis of glycolipids and metabolites in living Synechococcus sp PCC 7002 using nanospray desorption electrospray ionization. Analyst 138(7):1971–1978. doi:10.1039/c3an36716a

    Article  CAS  Google Scholar 

  30. Reyzer ML, Hsieh Y, Ng K, Korfmacher WA, Caprioli RM (2003) Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38(10):1081–1092. doi:10.1002/jms.525

    Article  CAS  Google Scholar 

  31. Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2–3):195–202. doi:10.1016/j.ijms.2006.10.007

    Article  CAS  Google Scholar 

  32. Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80(13):5168–5177. doi:10.1021/ac800546a

    Article  CAS  Google Scholar 

  33. Wiseman JM, Ifa DR, Zhu YX, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A 105(47):18120–18125. doi:10.1073/pnas.0801066105

    Article  Google Scholar 

  34. Nilsson A Fehniger TE. Gustavsson L. Andersson M. Kenne K. Marko-Varga G. Andren PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5 (7). doi:10.1371/journal.pone.0011411

  35. Shahidi-Latham SK, Dutta SM, Prieto Conaway MC, Rudewicz PJ (2012) Evaluation of an accurate mass approach for the simultaneous detection of drug and metabolite distributions via whole-body mass spectrometric imaging. Anal Chem 84(16):7158–7165. doi:10.1021/ac3015142

    Article  CAS  Google Scholar 

  36. Seeley EH, Caprioli RM (2012) 3D imaging by mass spectrometry: a new frontier. Anal Chem 84(5):2105–2110. doi:10.1021/ac2032707

    Article  CAS  Google Scholar 

  37. Cheng J, Wucher A, Winograd N (2006) Molecular depth profiling with cluster ion beams. J Phys Chem B 110(16):8329–8336. doi:10.1021/jp0573341

    Article  CAS  Google Scholar 

  38. Delcorte A (2008) On the road to high-resolution 3D molecular imaging. Appl Surf Sci 255(4):954–958. doi:10.1016/j.apsusc.2008.05.111

    Article  CAS  Google Scholar 

  39. Fletcher JS, Vickerman JC (2010) A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal Bioanal Chem 396(1):85–104. doi:10.1007/s00216-009-2986-3

    Article  CAS  Google Scholar 

  40. Vickerman JC (2011) Molecular imaging and depth profiling by mass spectrometry-SIMS, MALDI or DESI? Analyst 136(11):2199–2217. doi:10.1039/c1an00008j

    Article  CAS  Google Scholar 

  41. Gillen G, Fahey A, Wagner M, Mahoney C (2006) 3D molecular imaging SIMS. Appl Surf Sci 252(19):6537–6541. doi:10.1016/j.apsusc.2006.02.235

    Article  CAS  Google Scholar 

  42. Breitenstein D, Rommel CE, Möllers R, Wegener J, Hagenhoff B (2007) The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Ed 46(28):5332–5335. doi:10.1002/anie.200604468

    Article  CAS  Google Scholar 

  43. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C-60) primary ions. Anal Chem 79(6):2199–2206. doi:10.1021/ac061370u

    Article  CAS  Google Scholar 

  44. Jones EA, Lockyer NP, Vickerman JC (2008) Depth profiling brain tissue sections with a 40 keV C-60(+) primary ion beam. Anal Chem 80(6):2125–2132. doi:10.1021/ac702127q

    Article  CAS  Google Scholar 

  45. Reyzer ML, Caprioli RM (2007) MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11(1):29–35. doi:10.1016/j.cbpa.2006.11.035

    Article  CAS  Google Scholar 

  46. Esquenazi E, Yang Y-L, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26(12):1521–1534. doi:10.1039/B915674G

    Article  CAS  Google Scholar 

  47. Andersson M, Andren P, Caprioli RM (2010) MALDI imaging and profiling mass spectrometry in neuroproteomics. In: Alzate O (ed) Neuroproteomics. CRC, Boca Raton (FL)

    Google Scholar 

  48. Ifa DR, Wu CP, Ouyang Z, Cooks RG (2010) Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135(4):669–681. doi:10.1039/b925257f

    Article  CAS  Google Scholar 

  49. Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5(1):101–108. doi:10.1038/nmeth1145

    Article  CAS  Google Scholar 

  50. Chen RB, Hui LM, Sturm RM, Li LJ (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20(6):1068–1077. doi:10.1016/j.jasms.2009.01.017

    Article  CAS  Google Scholar 

  51. Li HH, Hummon AB (2011) Imaging mass spectrometry of three-dimensional cell culture systems. Anal Chem 83(22):8794–8801. doi:10.1021/ac202356g

    Article  CAS  Google Scholar 

  52. Watrous JD, Phelan VV, Hsu CC, Moree WJ, Duggan BM, Alexandrov T, Dorrestein PC (2013) Microbial metabolic exchange in 3D. Isme J 7(4):770–780. doi:10.1038/ismej.2012.155

    Article  CAS  Google Scholar 

  53. Trede D, Schiffler S, Becker M, Wirtz S, Steinhorst K, Strehlow J, Aichler M, Kobarg JH, Oetjen J, Dyatlov A, Heldmann S, Walch A, Thiele H, Maass P, Alexandrov T (2012) Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal Chem 84(14):6079–6087. doi:10.1021/ac300673y

    Article  CAS  Google Scholar 

  54. Sinha TK, Khatib-Shahidi S, Yankeelov TE, Mapara K, Ehtesham M, Cornett DS, Dawant BM, Caprioli RM, Gore JC (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5(1):57–59. doi:10.1038/nmeth1147

    Article  CAS  Google Scholar 

  55. Eberlin LS, Ifa DR, Wu C, Cooks RG (2010) Three-dimensional visualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew Chem-Int Ed 49(5):873–876. doi:10.1002/anie.200906283

    Article  CAS  Google Scholar 

  56. Eberlin LS, Ferreira CR, Cooks RG (2012) Three-dimensional chemical imaging of a whole pig fetus by desorption electrospray ionization mass spectrometry. Reprod Fertil Dev 24(1):144–145

    Article  Google Scholar 

  57. Nemes P, Barton AA, Vertes A (2009) Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem 81(16):6668–6675. doi:10.1021/ac900745e

    Article  CAS  Google Scholar 

  58. Spraggins JM, Caprioli R (2011) High-speed maldi-tof imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031. doi:10.1007/s13361-011-0121-0

    Article  CAS  Google Scholar 

  59. Roach PJ, Laskin J, Laskin A (2010) Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135(9):2233–2236. doi:10.1039/c0an00312c

    Article  CAS  Google Scholar 

  60. Roach PJ, Laskin J, Laskin A (2010) Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. Anal Chem 82(19):7979–7986. doi:10.1021/ac101449p

    Article  CAS  Google Scholar 

  61. Nguyen TB, Roach PJ, Laskin J, Laskin A, Nizkorodov SA (2011) Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmos Chem Phys 11(14):6931–6944. doi:10.5194/acp-11-6931-2011

    Article  CAS  Google Scholar 

  62. Eckert PA, Roach PJ, Laskin A, Laskin J (2012) Chemical characterization of crude petroleum using nanospray desorption electrospray ionization coupled with high-resolution mass spectrometry. Anal Chem 84(3):1517–1525. doi:10.1021/ac202801g

    Article  CAS  Google Scholar 

  63. Laskin J, Eckert PA, Roach PJ, Heath BS, Nizkorodov SA, Laskin A (2012) Chemical analysis of complex organic mixtures using reactive nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(16):7179–7187. doi:10.1021/ac301533z

    Article  CAS  Google Scholar 

  64. Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(1):141–148. doi:10.1021/ac2021322

    Article  CAS  Google Scholar 

  65. Lanekoff I, Heath BS, Liyu A, Thomas M, Carson JP, Laskin J (2012) Automated platform for high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(19):8351–8356. doi:10.1021/ac301909a

    Article  CAS  Google Scholar 

  66. Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J (2012) Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem 85(2):882–889. doi:10.1021/ac302308p

    Article  Google Scholar 

  67. Lanekoff I, Burnum-Johnson K, Thomas M, Short J, Carson JP, Cha J, Dey SK, Yang PX, Conaway MCP, Laskin J (2013) High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. Anal Chem 85(20):9596–9603. doi:10.1021/ac401760s

    Article  CAS  Google Scholar 

  68. Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC (2013) Metabolic profiling directly from the petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal Chem 85(21):10385–10391. doi:10.1021/ac4023154

    Article  CAS  Google Scholar 

  69. Laskin A, Laskin J, Nizkorodov SA (2012) Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environ Chem 9(3):163–189. doi:10.1071/en12052

    Article  CAS  Google Scholar 

  70. Lanekoff I, Thomas M, Laskin J (2014) Shotgun approach for quantitative imaging of phospholipids using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 86(3):1872–1880. doi:10.1021/ac403931r

    Article  CAS  Google Scholar 

  71. Lanekoff I, Stevens SL, Stenzel-Poore MP, Laskin J (2014) Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst 139(14):3528–3532. doi:10.1039/c4an00504j

    Article  CAS  Google Scholar 

  72. Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J (2013) Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem 85(2):882–889. doi:10.1021/ac302308p

    Article  CAS  Google Scholar 

  73. Thomas M. Heath BS. Laskin J. Dongsheng L. Liu E, Hui K. Kuprat AP. Kleese van Dam K. Carson JP Visualization of high resolution spatial mass spectrometric data during acquisition. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, Aug. 28 2012-Sept. 1 2012. pp 5545–5548. doi:10.1109/EMBC.2012.6347250

  74. Cha JY, Sun XF, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18(12):1754–1767. doi:10.1038/nm.3012

    Article  CAS  Google Scholar 

  75. Arima N, Uchida Y, Yu RX, Nakayama K, Nishina H (2013) Acetylcholine receptors regulate gene expression that is essential for primitive streak formation in murine embryoid bodies. Biochem Biophys Res Commun 435(3):447–453. doi:10.1016/j.bbrc.2013.05.006

    Article  CAS  Google Scholar 

  76. Laasberg T, Neuman T (1985) Changes in the acetylcholinesterase and choline acetyltransferase activities in the early development of the chick embryo. Wilhelm Roux’ Archiv 194(5):306–310. doi:10.1007/BF01152177

    Article  CAS  Google Scholar 

  77. Gustafson T, Toneby M (1970) On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp Cell Res 62(1):102–117. doi:10.1016/0014-4827(79)90512-3

    Article  CAS  Google Scholar 

  78. Drews U (1975) Cholinesterase in embryonic development. Prog Histochem Cytochem 7(3):1–52

    Article  CAS  Google Scholar 

  79. Fisher MC, Zeisel SH, Mar M-H, Sadler TW (2002) Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J 16(6):619–621. doi:10.1096/fj.01-0564fje

    CAS  Google Scholar 

  80. Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Finegold M, Wakil SJ (2003) Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci 100(11):6358–6363. doi:10.1073/pnas.0931394100

    Article  CAS  Google Scholar 

  81. Burnum KE, Cornett DS, Puolitaival SM, Milne SB, Myers DS, Tranguch S, Brown HA, Dey SK, Caprioli RM (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50(11):2290–2298. doi:10.1194/jlr.M900100-JLR200

    Article  CAS  Google Scholar 

  82. Tian Z, Zhao ZA, Liang XH, Zhang XH, Sha AG, Zhang ZR, Yu YS, Yang ZM (2011) Expression and function of fatty acid-binding protein 4 during mouse decidualization. Fertil Steril 95(8):2749–U2418. doi:10.1016/j.fertnstert.2011.05.052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this paper is part of the Chemical Imaging Initiative, at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL a multiprogram national laboratory operated by Battelle for the US Department of Energy (DOE) under Contract DE-AC05-76RL01830. The research was performed at EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. This work was partially supported by NIH grants (HD068524 and DA06668) and the March of Dimes to SKD. JC is supported by a Ruth L. Kirschstein Predoctoral NRSA Fellowship (F30AG040858).

A single-pixel MS spectrum, MS/MS spectra of selected compounds discussed in the paper, selected 2D images, and the 3D image reconstruction can be found in the Electronic Supplementary Material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Laskin.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Electronic supplementary material

A single-pixel MS spectrum, MS/MS spectra of selected compounds discussed in the paper, selected 2D images, and the 3D image reconstruction can be found in the Electronic Supplementary Material.

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.23 mb)

ESM 2

(AVI 0.98 mb)

ESM 3

(AVI 1.30 mb)

ESM 4

(AVI 1.43 mb)

ESM 5

(AVI 0.98 mb)

ESM 6

(AVI 1.21 mb)

ESM 7

(AVI 1.28 mb)

ESM 8

(AVI 1.27 mb)

ESM 9

(AVI 1.17 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanekoff, I., Burnum-Johnson, K., Thomas, M. et al. Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 407, 2063–2071 (2015). https://doi.org/10.1007/s00216-014-8174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8174-0

Keywords

Navigation