Skip to main content
Log in

Towards an unbiased metabolic profiling of protozoan parasites: optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 11 March 2011

Abstract

Comparative metabolomics of Leishmania species requires the simultaneous identification and quantification of a large number of intracellular metabolites. Here, we describe the optimisation of a comprehensive metabolite extraction protocol for Leishmania parasites and the subsequent optimisation of the analytical approach, consisting of hydrophilic interaction liquid chromatography coupled to LTQ-orbitrap mass spectrometry. The final optimised protocol starts with a rapid quenching of parasite cells to 0 °C, followed by a triplicate washing step in phosphate-buffered saline. The intracellular metabolome of 4 × 107 parasites is then extracted in cold chloroform/methanol/water 20/60/20 (v/v/v) for 1 h at 4 °C, resulting in both cell disruption and comprehensive metabolite dissolution. Our developed metabolomics platform can detect approximately 20% of the predicted Leishmania metabolome in a single experiment in positive and negative ionisation mode.

Final optimized protocol for the study of the intracellular metabolome of Leishmania parasites. Following HILIC-orbitrap analysis of obtained metabolite extracts, 20% of the predicted metabolome is covered, involving metabolites from many different pathways

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Nat Rev Microbiol 5:873–882

    Article  CAS  Google Scholar 

  2. Smith DF, Peacock CS, Cruz AK (2007) Int J Parasitol 37:1173–1186

    Article  CAS  Google Scholar 

  3. Scheltema RA, Decuypere S, t’Kindt R, Dujardin JC, Coombs GH, and Breitling R (2010) Parasitology First View 1–12

  4. Faijes M, Mars A, Smid E (2007) Microb Cell Fact 6:27

    Article  Google Scholar 

  5. Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R (2008) Anal Chem 80:2939–2948

    Article  CAS  Google Scholar 

  6. Meyer H, Liebeke M, Lalk M (2010) Anal Biochem 401:250–259

    Article  CAS  Google Scholar 

  7. Villas-Boas SG, Bruheim P (2007) Anal Biochem 370:87–97

    Article  CAS  Google Scholar 

  8. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Anal Chem 79:3843–3849

    Article  CAS  Google Scholar 

  9. Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ, Dickson AJ (2008) Anal Chem 81:174–183

    Article  Google Scholar 

  10. Bolling C, Fiehn O (2005) Plant Physiol 139:1995–2005

    Article  Google Scholar 

  11. Prasad MR, Ferenci T (2003) Anal Biochem 313:145–154

    Article  Google Scholar 

  12. Lee D, Fiehn O (2008) Plant Meth 4:7

    Article  CAS  Google Scholar 

  13. Jaki BU, Franzblau SG, Cho SH, Pauli GF (2006) J Pharm Biomed Anal 41:196–200

    Article  CAS  Google Scholar 

  14. Naderer T, McConville MJ (2008) Cell Microbiol 10:301–308

    Article  CAS  Google Scholar 

  15. Kamleh A, Barrett MP, Wildridge D, Burchmore RJS, Scheltema RA, Watson DG (2008) Rapid Commun Mass Spectrom 22:1912–1918

    Article  CAS  Google Scholar 

  16. Kamleh MA, Dow JAT, Watson DG (2009) Brief Funct Genomic Proteomic 8:28–48

    Article  CAS  Google Scholar 

  17. Annesley TM (2003) Clin Chem 49:1041–1044

    Article  CAS  Google Scholar 

  18. Bottcher C, Roepenack-Lahaye EV, Willscher E, Scheel D, Clemens S (2007) Anal Chem 79:1507–1513

    Article  Google Scholar 

  19. Mottram JC, Robertson CD, Coombs GH, Barry JD (1992) Mol Microbiol 6:1925–1932

    Article  CAS  Google Scholar 

  20. Rijal S, Yardley V, Chappuis F, Decuypere S, Khanal B, Singh R, Boelaert M, De DS, Croft S, Dujardin JC (2007) Microbes Infect 9:529–535

    Article  CAS  Google Scholar 

  21. Quispe Tintaya K, Ying X, Dedet J, Rijal S, De Bolle X, Dujardin JC (2004) J Infect Dis 189:1035–1043

    Article  Google Scholar 

  22. Kamleh MA, Hobani Y, Dow JA, Zheng L, Watson DG (2009) FEBS J 276:6798–6809

    Article  CAS  Google Scholar 

  23. Scheltema RA, Kamleh A, Wildridge A, Ebikeme C, Watson DG, Barrett MP, Jansen RC, Breitling R (2008) Proteomics 8:4647–4656

    Article  CAS  Google Scholar 

  24. Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Mol Cell Proteomics 4:2010–2021

    Article  CAS  Google Scholar 

  25. Christin C, Smilde AK, Hoefsloot HCJ, Suits F, Bischoff R, Horvatovich PL (2008) Anal Chem 80:7012–7021

    Article  CAS  Google Scholar 

  26. Windig W (2005) Chemom Intell Lab Syst 77:206–214

    CAS  Google Scholar 

  27. Shah V, Midha K, Findlay J, Hill H, Hulse J, McGilveray I, McKay G, Miller K, Patnaik R, Powell M, Tonelli A, Viswanathan CT, Yacobi A (2000) Pharm Res 17:1551–1557

    Article  CAS  Google Scholar 

  28. Scheltema RA, Decuypere S, Dujardin JC, Watson DG, Jansen RC, Breitling R (2009) Bioanalysis 1:1551–1557

    Article  CAS  Google Scholar 

  29. Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, Likic VA (2009) BMC Syst Biol 3:57

    Article  Google Scholar 

  30. Fahy E, Sud M, Cotter D, Subramaniam S (2007) Nucleic Acids Res 35:W606–W612

    Article  Google Scholar 

  31. Keller BO, Sui J, Young AB, Whittal RM (2008) Anal Chim Acta 627:71–81

    Article  CAS  Google Scholar 

  32. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) Nucleic Acids Res 27:29–34

    Article  CAS  Google Scholar 

  33. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, MacInnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  34. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal B, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Metabolomics 5:435–458

    Article  CAS  Google Scholar 

  35. Trygg J, Holmes E, Lundstedt T (2007) J Proteome Res 6:469–479

    Article  CAS  Google Scholar 

  36. De Souza DP, Saunders EC, McConville MJ, Likic VA (2006) Bioinformatics 22:1391–1396

    Article  Google Scholar 

  37. Wittmann C, Kramer JO, Kiefer P, Binz T, Heinzle E (2004) Anal Biochem 327:135–139

    Article  CAS  Google Scholar 

  38. Mal M, Koh PK, Cheah PY, Chan EC (2009) Rapid Commun Mass Spectrom 23:487–494

    Article  CAS  Google Scholar 

  39. Rover JL, Fernandes JC, de Oliveira NG, Kubota LT, Katekawa E, Serrano SH (1998) Anal Biochem 260:50–55

    Article  CAS  Google Scholar 

  40. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Science 227:1485–1487

    Article  CAS  Google Scholar 

  41. Granger J, Plumb R, Castro-Perez J, Wilson ID (2005) Chromatographia 61:375–380

    Article  CAS  Google Scholar 

  42. Zelena E, Dunn WB, Broadhurst D, Francis-McIntyre S, Carroll KM, Begley P, O’Hagan S, Knowles JD, Halsall A, Wilson ID, Kell DB (2009) Anal Chem 81:1357–1364

    Article  CAS  Google Scholar 

  43. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Nat Protoc 1:387–396

    Article  CAS  Google Scholar 

  44. Fiehn O (2006) Meth Mol Biol 323:439–447

    CAS  Google Scholar 

  45. Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Mol Syst Biol 4:177

    Article  Google Scholar 

  46. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) FASEB J 22:590–602

    Article  CAS  Google Scholar 

  47. Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Mol Biochem Parasitol 152:53–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GeMInI initiative of the Institute of Tropical Medicine. Ruben t’Kindt was supported by a Research Foundation Flanders Grant for a long stay in Strathclyde. Rainer Breitling was supported by an NWO-Vidi fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Dujardin.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-011-4796-7

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7077 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

t’Kindt, R., Jankevics, A., Scheltema, R.A. et al. Towards an unbiased metabolic profiling of protozoan parasites: optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Anal Bioanal Chem 398, 2059–2069 (2010). https://doi.org/10.1007/s00216-010-4139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4139-0

Keywords

Navigation