Skip to main content
Log in

Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Iodine has recently been of interest in atmospheric chemistry due to its role in tropospheric ozone depletion, modification of the HO/HO2 ratio and aerosol nucleation. Gas-phase iodine chemistry is tightly coupled to the aerosol phase through heterogeneous reactions, which are dependent on iodine concentrations and speciation in the aerosol. To date, the only method available for total iodine determination in aerosols is collection on filters by impaction and quantification by neutron activation analysis (NAA). NAA is not widely available to all working groups and is costly to commission. Here, we present a method to determine total iodine concentrations in aerosol impact filter samples by combustion of filter sub-samples (∼5 cm2) at 1,000 °C, trapping in deionised water and quantification by UV/Vis spectroscopy. Both quartz and cellulose filters were analysed from four separate sampling campaigns. The method proved to be sensitive (3σ = 6 ng absolute iodine ≈ 3 pmol m−3) precise (RSD ∼ 5%) and accurate, as determined by external and standard addition calibrations. Total iodine concentrations ranged from 10 pmol m−3 over the Southern Ocean to 100 pmol m−3 over the tropical Atlantic, in agreement with previous estimates. The soluble iodine concentration (extracted with water and measured by ICP-MS) was then subtracted from the total iodine to yield non-water-soluble iodine (NSI). The NSI fraction ranged from 20% to 53% of total iodine, and thus can be significant in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersson M, de Benoist B, Darnton-Hill I, Delange F (2007) Iodine deficiency in Europe: a continuing public health problem. World Health Organization, Geneva, pp 1–86

    Google Scholar 

  2. de Benoist B, Andersson A, Egli I, Takkouche B, Allen H (2004) Iodine status worldwide. World Health Organization, Geneva, pp 1–46

    Google Scholar 

  3. O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Hameri K, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002) Nature 417:632–636

    Article  Google Scholar 

  4. Read KA, Mahajan AS, Carpenter LJ, Evans MJ, Faria BVE, Heard DE, Hopkins JR, Lee JD, Moller SJ, Lewis AC, Mendes L, McQuaid JB, Oetjen H, Saiz-Lopez A, Pilling MJ, Plane JMC (2008) Nature 453:1232–1235. doi:10.1038/nature07035

    Article  CAS  Google Scholar 

  5. Bloss WJ, Lee JD, Johnson GP, Sommariva R, Heard DE, Saiz-Lopez A, Plane JMC, McFiggans G, Coe H, Flynn M, Williams PI, Rickard AR, Fleming ZL (2005) Geophys Res Lett 32:L06814. doi:10.1029/2004GL022084

    Article  Google Scholar 

  6. Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SB, Jones AE, Roscoe HK, Plane JMC (2007) Science 317:348–351. doi:10.1126/science.1141408

    Article  CAS  Google Scholar 

  7. Alicke B, Hebestreit K, Stutz U, Platt U (1999) Nature 397:572–573

    Article  CAS  Google Scholar 

  8. Von Glasow R (2005) Environ Chem 2:243–244

    Article  Google Scholar 

  9. Vuollekoski H, Kerminen VM, Anttila T, Sihto SL, Vana M, Ehn M, Korhonen H, McFiggans G, O’Dowd CD, Kulmala M (2009) J Geophys Res 114:doi:10.1029/2008JD010713

  10. O’Dowd CD, Hoffmann T (2005) Environ Chem 2:245–255

    Article  Google Scholar 

  11. Vogt R, Sander R, von Glasow R, Crutzen PJ (1999) J Atmos Chem 32:375–395

    Article  CAS  Google Scholar 

  12. McFiggans G, Plane JMC, Allan BJ, Carpenter LJ (2000) J Geophys Res 105:14371–14385

    Article  CAS  Google Scholar 

  13. Duce RA, Winchester JW, Van Nahl TW (1965) J Geophys Res 70:1775–1799

    Article  CAS  Google Scholar 

  14. Duce RA, Woodcock AH (1971) Tellus XXIII:427–434

    Article  Google Scholar 

  15. Heumann KG (1993) Anal Chim Acta 283:230–245

    Article  CAS  Google Scholar 

  16. Heumann KG, Gall M, Weiss H (1987) Geochim Cosmochim Acta 51:2541–2547

    Article  CAS  Google Scholar 

  17. Sturges WT, Barrie LA (1988) Atmos Environ 22:1179–1194

    Article  CAS  Google Scholar 

  18. von Glasow R, Crutzen PJ (2007) Tropospheric halogen chemistry. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier, pp. 21–63

  19. Gilfedder BS, Lai SC, Petri M, Biester H, Hoffmann T (2008) Atmos Chem Phys 8:6069–6084

    Article  CAS  Google Scholar 

  20. Baker AR (2005) Environ Chem 2:295–298

    Article  CAS  Google Scholar 

  21. Gäbler H-E, Heumann KG (1993) Fresenius J Anal Chem 345:53–59

    Article  Google Scholar 

  22. Lai S, Hoffmann T, Xie ZQ (2008) Geophys Res Lett 35:doi:10.1029/2008GL035492

  23. Wimschneider A, Heumann KG (1995) Fresenius J Anal Chem 353:191–196

    Article  CAS  Google Scholar 

  24. Baker AR (2004) Geophys Res Lett 31:L23S02

    Article  Google Scholar 

  25. Jickells TD (1988) Mar Chem 24:61–82

    Article  CAS  Google Scholar 

  26. Duce RA, Wasson JT, Winchester JW, Burns F (1963) J Geophys Res 68:3943–3947

    CAS  Google Scholar 

  27. Arimoto R, Duce RA, Ray BJ, Ellis WG Jr, Cullen JD, Merrill JT (1995) J Geophys Res 100:1199–1213

    Article  CAS  Google Scholar 

  28. Tsukada H, Hara H, Iwashima K, Yamagata N (1987) Bull Chem Soc Jpn 60:3195–3198

    Article  CAS  Google Scholar 

  29. Baker AR, Thompson D, Campos AM, Parry SJ, Jickells TD (2000) Atmos Environ 34:4331–4336

    Article  CAS  Google Scholar 

  30. Gilfedder BS, Althoff F, Petri M, Biester H (2007) Anal Bioanal Chem 389:2323–2329. doi:10.1007/s00216-007-1621-4

    Article  CAS  Google Scholar 

  31. Brimblecombe P, Clegg SL (1988) J Atmos Chem 7:1–18

    Article  CAS  Google Scholar 

  32. Truesdale VW, Canosa-Mas CE, Luther GW (1995) Mar Chem 51:55–60

    Article  CAS  Google Scholar 

  33. Nagy K, Körtvelyesi T, Nagypal I (2003) J Solution Chem 32:385–393

    Article  CAS  Google Scholar 

  34. DIN 38405–33 (2001) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Anionen (Gruppe D) - Teil 33: Bestimmung von Iodid mittels Photometrie (D 33). Berlin, Beuth, p D33

    Google Scholar 

  35. Sandell EB, Kolthoff IM (1937) Microchim Acta 1:9–25. doi:10.1007/BF01476194

    Article  CAS  Google Scholar 

  36. Keller HE, Doenecke D, Weidler K, Leppia W (1973) Ann NY Acad Sci 220:1–14

    Article  Google Scholar 

  37. Winchester JW, Duce RA (1967) Naturwissenschaften 54:110–113

    Article  CAS  Google Scholar 

  38. Duce RA, Zoller WH, Moyers JL (1973) J Geophys Res 78:7802–7811. doi:10.1029/JC078i033p07802

    Article  CAS  Google Scholar 

  39. Wu D, Deng H, Wang W, Xiao H (2007) Anal Chim Acta 601:183–188

    Article  CAS  Google Scholar 

  40. Grinberg P, Sturgeon RE (2009) Spectrochim Acta part B 64:235–241

    Article  Google Scholar 

  41. Schnetger B, Muramatsu Y (1996) Analyst 121:1627–1631

    Article  CAS  Google Scholar 

  42. O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud JP (2004) Nature 431:676

    Article  Google Scholar 

  43. Desboeufs KV, Losno R, Colin JL (2001) Atmos Environ 35:3529–3537

    Article  CAS  Google Scholar 

  44. Krivácsy Z, Hoffer A, Sárvári Z, Temesi D, Baltensperger U, Nyek S, Weingartner E, Kleefeld D, Jennings SG (2001) Atmos Environ 35:6231–6244

    Article  Google Scholar 

  45. Colomb A, Gros V, Alvain S, Sarda-Esteve R, Bonsang B, Moulin C, Klüpfel T, Williams J (2008) Environ Chem 5:70–82

    Google Scholar 

  46. Yassaa N, Peeken I, Zöllner E, Bluhm K, Arnold A, Spracklen D, Williams J (2008) Environ Chem 5:391–401. doi:10.1071/EN08047

    Article  CAS  Google Scholar 

  47. Gäbler H-E, Heumann KG (1993) Int J Environ Anal Chem 50:129–146

    Article  Google Scholar 

  48. Tuncel G, Aras NK, Zoller WH (1989) J Geophys Res 94:13025–13038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BSG was supported by internal funding from the Institute for Environmental Geology, TU-Braunschweig, while SCL was supported by the DFG programme ‘Trace Analysis of Elemental Species: Development of Methods and Applications’. RJC was supported by NERC UK-SOLAS (grant NE/D006538/1) and travelled to Germany to contribute to this work through COST STSM Action 735. We would also like to thank Z.Q. Xie for the samples from the Xue Long cruse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Gilfedder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilfedder, B.S., Chance, R., Dettmann, U. et al. Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI). Anal Bioanal Chem 398, 519–526 (2010). https://doi.org/10.1007/s00216-010-3923-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3923-1

Keywords

Navigation