Skip to main content
Log in

Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole–linear ion trap mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method for the comprehensive profiling of the N-acylhomoserine lactone (AHL) family of bacterial quorum-sensing molecules is presented using liquid chromatography (LC) coupled to hybrid quadrupole–linear ion trap (QqQLIT) mass spectrometry. Information-dependent acquisition (IDA), using triggered combinations of triple-quadrupole and linear ion trap modes in the same LC-MS/MS run, was used to simultaneously screen, quantify and identify multiple AHLs in a single sample. This MS method uses common AHL fragment ions attributed to the homoserine moiety and the 3-oxo-, 3-hydroxy- or unsubstituted acyl side chains, to identify unknown AHLs in cell-free culture supernatants in an unbiased manner. This LC-MS technique was applied to determine the relative molar ratios of AHLs produced by Yersinia pseudotuberculosis and the consequences of inactivating by mutation either or both of the AHL synthase genes (ypsI and ytbI) on AHL profile and concentration. The Y. pseudotuberculosis wild type but not the ypsI ytbI double mutant produced at least 24 different AHLs with acyl chains ranging from C4 to C15 with or without 3-oxo or 3-hydroxy substituents. YtbI, in contrast to YpsI, could direct the synthesis of all of the AHLs identified. The most abundant and hence most biologically relevant Y. pseudotuberculosis AHLs were found to be the 3-oxo-substituted C6, C7 and C8 AHLs and the unsubstituted C6 and C8 compounds. The LC-QqQLIT methodology is broadly applicable to quorum-sensing signal molecule analysis and can provide comprehensive AHL profiles and concentrations from a single sample and simultaneously collect confirmatory spectra for each AHL identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Swift S, Downie JA, Whitehead N, Barnard AML, Salmond, GPC Williams P (2001) Adv Microb Physiol 45:199–270

    CAS  Google Scholar 

  2. Williams P, Winzer K, Chan W, Cámara M (2006) Phil Trans Roy Soc B (in press)

  3. Milton D, Chalker V, Hardman A, Cámara M, Williams P (2001) J Bact 183:3537–3547

    Article  CAS  Google Scholar 

  4. Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) In: Schulz S (eds) Chemistry of pheromones and other semiochemicals, vol 240. Springer-Verlag, pp 279–315

  5. Swift S, Williams P, Stewart GSAB (1999) In: Winans S, Dunny G (eds) Cell-cell signalling in bacteria. American Society for Microbiology Press, pp 291–313

  6. Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CED, Chhabra SR, Hill PH, Throup JP, Bycroft BW, Salmond GPC, Williams P, Stewart GSAB (1993) Mol Microbiol 10:511–520

    Article  CAS  Google Scholar 

  7. Wren BW (2003) Nat Rev Microbiol 1:55–64

    Article  CAS  Google Scholar 

  8. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Proc Natl Acad Sci USA 96:14043–14048

    Article  CAS  Google Scholar 

  9. Atkinson S, Throup JP, Stewart GSAB, Williams P (1999) Mol Microbiol 33:1267–1277

    Article  CAS  Google Scholar 

  10. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P (2002) Infect Immun 70:5635–5646

    Article  CAS  Google Scholar 

  11. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB, Williams P (1992) Biochem J 288:997–1004

    CAS  Google Scholar 

  12. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Cámara M, Daykin M, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Microbiology-SGM 143:3703–3711

    Article  CAS  Google Scholar 

  13. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft, BW, Williams P, Stewart GSAB (1998) FEMS Letts 163:185–192

    Article  CAS  Google Scholar 

  14. Shaw PD, Gao P, Daly SL, Cha C, Cronan JE Jr, Rinehaert KL, Farrand SK (1997) Proc Nat Acad Sci USA 94:6036–6041

    Article  CAS  Google Scholar 

  15. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) Appl Environ Microbiol 67:575–585

    Article  CAS  Google Scholar 

  16. Morin D, Grasland B, Vallee-Rehel K, Dufau C, Hara D (2003) J Chromatogr A 1002:79–82

    Article  CAS  Google Scholar 

  17. Hager JW (2002) Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  18. Hager JW, Yves Le Blanc JC (2003) Rapid Commun Mass Spectrom 17:1056–1064

    Article  CAS  Google Scholar 

  19. Chhabra SR, Stead P, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) J Antibiotics 46:441–454

    CAS  Google Scholar 

  20. Chhabra SR, Harty C, Hooi DSW, Daykin M, Williams P, Pritchard DI, Bycroft BW (2003) J Med Chem 46:97–104

    Article  CAS  Google Scholar 

  21. Throup JK, Cámara M, Briggs GS, Winson MK, Bycroft BW, Williams P, Stewart GSAB (1995) Mol Microbiol 17:345–356

    Article  CAS  Google Scholar 

  22. Atkinson S, Sockett, RE, Camara M, Williams P (2006) Curr Issues Mol Biol 8:1–10

    CAS  Google Scholar 

  23. Kirwan JP, Gould TA, Schweizer HP, Bearden SW, Murphy RC, Churchill MEA (2006) J Bacteriol 188:784–788

    Article  CAS  Google Scholar 

  24. Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Nature 362:446–448

    Article  CAS  Google Scholar 

  25. Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Otori C, Williams P, Fray RG (2004) Mol Plant Microb Interact 8:880–887

    Article  Google Scholar 

  26. Angel-Picard C, Faure D, Penot I, Dessaux Y (2005) Environ Microbiol 7:1796–1808

    Article  CAS  Google Scholar 

  27. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) Mol Microbiol 37:81–97

    Article  CAS  Google Scholar 

  28. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P (2002) Mol Microbiol 45:1655–1671

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by a research grant from the Biotechnology and Biological Sciences Research Council UK which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Barrett.

Additional information

Catharine A. Ortori and Steve Atkinson made an equal contribution to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortori, C.A., Atkinson, S., Chhabra, S.R. et al. Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole–linear ion trap mass spectrometry. Anal Bioanal Chem 387, 497–511 (2007). https://doi.org/10.1007/s00216-006-0710-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0710-0

Keywords

Navigation