Skip to main content
Log in

Biochemical assessment of bone turnover and bone fragility in men

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis in men is less studied than in women. Few data concern biochemical bone turnover markers (BTM) in men and their potential use.

Methodology

We evaluated papers concerning BTM in men cited on Medline. Selection of studies were based on the number of subjects, age range, group homogeneity, follow-up duration, number of BTM.

Results

BTM levels are high in young men, then decrease with age.In elderly men, bone resorption increases with age more than bone formation. Variability of individual values is high and their significance is unclear. In elderly men, BTM levels correlate negatively with bone mineral density suggesting that accelerated bone turnover underlies age-related bone loss. Data on the prediction of accelerated bone loss and fractures by BTM in men are scant. Testosterone treatment induces a decrease in bone resorption followed by a decrease in bone formation. Bisphosphonates and calcitonin decrease BTM levels in osteoporotic men. Parathyroid hormone 1–34 and growth hormone induce a rapid increase in bone turnover followed by a progressive slowdown.

Conclusions

Few studies concern BTM in men. Currently available data are not sufficient to suggest guidelines for the practical use of BTM in the clinical management of the osteoporosis in elderly men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BTM:

bone turnover marker

aBMD:

areal bone mineral density

OC:

osteocalcin

BAP:

bone alkaline phosphatase

PINP:

procollagen type I N propeptide

PICP:

procollagen type I C propeptide

DPD:

deoxypyridinoline

Gal-Hyl:

galactosyl hydroxylysine

PYD:

pyridinoline

Hyl:

hydroxylysine

Hyp:

hydroxyproline

CTX-I:

C-terminal crosslinking telopeptide of type I collagen

NTX-I:

N-terminal crosslinking telopeptide of type I collagen

CTX-MMP (ICTP):

C-terminal crosslinking telopeptide of type I collagen generated by metalloproteinases

TRACP5b:

tartrate-resistant acid phosphatase type 5b

BioT:

bioavailable testosterone

References

  1. Fransen M, Woodward M, Norton R, Robinson E, Butler M, Campbell AJ (2002) Excess mortality or institutionalisation after hip fracture: men are at greater risk than women. J Am Geriatr Soc 50:685–690

    Article  PubMed  Google Scholar 

  2. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis. Osteoporos Int 11(Suppl 6):S2–S17

    Article  PubMed  Google Scholar 

  3. Lieuw-a-Fa M, Sierra RI, Specker BL (1995) Carboxy-terminal propeptide of human type I collagen and pyridinium cross-links as markers of bone growth in infants 1 to 18 months of age. J Bone Miner Res 10:849–853

    PubMed  CAS  Google Scholar 

  4. Tobiume H, Kanzaki S, Hida S, Ono T, Moriwake T, Yamauchi S et al (1997) Serum bone alkaline phosphatase isoenzyme levels in normal children and children with growth hormone (GH) deficiency : a potential marker for bone formation and response to GH therapy. J Clin Endocrinol Metab 82:2056–2061

    Article  PubMed  CAS  Google Scholar 

  5. Marowska J, Kobylinska M, Lukaszewicz J, Talajko A, Rymkiewicz-Kluczynska B, Lorenc RS (1996) Pyridinium crosslinks of collagen as a marker of bone resorption rates in children and adolescents : normal values and clinical applications. Bone 19:669–677

    Article  PubMed  CAS  Google Scholar 

  6. Mora S, Prinster C, Proverbio MC, Bellini A, de Poli SCL, Weber G et al (1998) Urinary markers of bone turnover in healthy children and adolescents : age-related changes and effect of puberty. Calcif Tissue Int 63:369–374

    Article  PubMed  CAS  Google Scholar 

  7. Coeverden SCCM van, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57:107–116

    Article  Google Scholar 

  8. Rauch F, Schönau E, Woitge H, Remer T, Seibel M (1994) Urinary excretion of hydroxy-pyridinium cross-links of collagen reflects skeletal growth velocity in normal children. Exp Clin Endocrinol 102:94–97

    Article  PubMed  CAS  Google Scholar 

  9. Seeman E (2001) Sexual dimorphism in skeletal size, density and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  PubMed  CAS  Google Scholar 

  10. Gundberg CM, Looker AC, Nieman SD, Calvo MS (2002) Patterns of osteocalcin and bone alkaline phosphatase by age, gender, and race or ethnicity. Bone 31:703–708

    Article  PubMed  CAS  Google Scholar 

  11. Szulc P, Garnero P, Munoz F, Marchand F, Delmas PD (2001) Cross-sectional evaluation of bone metabolism in men. J Bone Miner Res 16:1642–1650

    Article  PubMed  CAS  Google Scholar 

  12. Fatayerji D, Eastell R (1999) Age-related changes in bone turnover in men. J Bone Miner Res 14:1203–1210

    Article  PubMed  CAS  Google Scholar 

  13. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  CAS  Google Scholar 

  14. Wishart JM, Need AG, Horowitz M, Morris HA, Nordin BEC (1995) Effect of age on bone density and bone turnover in men. Clin Endocrinol 42:141–145

    CAS  Google Scholar 

  15. Chandani AK, Scariano JK, Glew RH, Clemens JD, Garry PJ, Baumgartner RN (2000) Bone mineral density and serum levels of aminoterminal propeptides and cross-linked N-telopeptides of type I collagen in elderly men. Bone 26:513–518

    Article  PubMed  CAS  Google Scholar 

  16. Gallagher JC, Kinayamu HK, Fowler SE, Dawson-Hughes B, Dalsky GP, Sherman SS (1998) Calciotropic hormones and bone markers in the elderly. J Bone Miner Res 13:475–482

    Article  PubMed  CAS  Google Scholar 

  17. Wang X, Shen X, Li X, Mauli Agrawal C (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  PubMed  Google Scholar 

  18. Minisola S, Dionisi S, Pacitti MT, Paglia F, Carnevale V, Scillitani A et al (2002) Gender differences in serum markers of bone resorption in healthy subjects and patients with disorders affecting bone. Osteoporos Int 13:171–175

    Article  PubMed  CAS  Google Scholar 

  19. Orwoll ES, Bell NH, Nanes MS, Flessland KA, Pettinger MB, Mallinak NJS, Cain DF (1998) Collagen N-telopeptide excretion in men : the effects of age and intrasubject variability. J Clin Endocrinol Metab 83:3930–3935

    Article  PubMed  CAS  Google Scholar 

  20. Colwell A, Eastell R (1996) Renal clearance of free and conjugated pyridinium crosslinks of collagen. J Bone Miner Res 11:1976–1980

    PubMed  CAS  Google Scholar 

  21. Garnero P, Gineyts E, Arbault P, Christiansen C, Delmas PD (1995) Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. J Bone Miner Res 10:641–649

    Article  PubMed  CAS  Google Scholar 

  22. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    Article  PubMed  CAS  Google Scholar 

  23. Szulc P, Munoz F, Claustrat B, Garnero P, Marchand F, Duboeuf F, Delmas PD (2001) Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab 86:192–199

    Article  PubMed  CAS  Google Scholar 

  24. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness in trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    Article  PubMed  CAS  Google Scholar 

  25. Grenspan SL, Dresner-Pollak R, Parker RA, London D, Fergusson L (1997) Diurnal variation of bone mineral turnover in elderly men and women. Calcif Tissue Int 60:419–423

    Article  Google Scholar 

  26. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61

    Article  PubMed  CAS  Google Scholar 

  27. Wichers M, Schmidt E, Bidlingmaier F, Klingmüller D (1999) Diurnal rhythm of crosslaps in human serum. Clin Chem 45:1858–1860

    PubMed  CAS  Google Scholar 

  28. Gundberg CM, Markowitz ME, Mizruchi M, Rosen JF (1985) Osteocalcin in human serum: a circadian rhythm. J Clin Endocrinol Metab 60:736–739

    PubMed  CAS  Google Scholar 

  29. Schlemmer A, Hassager C, Alexandersen P, Fledelius C, Pedersen BJ, Kristensen LO, Christiansen C (1997) Circadian variation in bone resorption is not related to serum cortisol. Bone 21:83–88

    Article  PubMed  CAS  Google Scholar 

  30. Ahmad AM, Hopkins MT, Fraser WD, Ooi CG, Durham BH, Vora JP (2003) Parathyroid hormone secretory pattern, circulating activity, and effect on bone turnover in adult hormone deficiency. Bone 32:170–179

    Article  PubMed  CAS  Google Scholar 

  31. Ledger GA, Burkitt MF, Kao PC, O’Fallon WM, Riggs BL, Khosla S (1995) Role of parathyroid hormone in mediating nocturnal and age-related increases in bone resorption. J Clin Endocrinol Metab 80:3304–3310

    Article  PubMed  CAS  Google Scholar 

  32. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE et al (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    Article  PubMed  CAS  Google Scholar 

  33. Szulc P, Marchand F, Duboeuf F, Delmas PD (2000) Cross-sectional assessment of age-related bone loss in men. Bone 26:123–129

    Article  PubMed  CAS  Google Scholar 

  34. Kenny AM, Gallagher JC, Prestwood KM, Gruman CA, Raisz LG (1998) Bone density, bone turnover, and hormone levels in men over age 75. J Gerontol Biol Sci Med Sci 53A:M419–M425

    CAS  Google Scholar 

  35. Schneider DL, Barrett-Connor EL (1997) Urinary N-telopeptide levels discriminate normal, osteopenic and osteoporotic bone mineral density. Arch Intern Med 157:1241–1245

    Article  PubMed  CAS  Google Scholar 

  36. Szulc P, Delmas PD (2006) Bone turnover markers predict long term bone loss in elderly men – the prospective MINOS study. J Bone Miner Res 21 (Suppl 1) S109 Abstract F336

  37. Cheng S, Suominen H, Väänänen K, Käkönen SM, Pettersson K, Heikkinen E (2002) Serum osteocalcin in relation to calcaneal bone mineral density in elderly men and women: a 5-year follow-up. J Bone Miner Res 20:49–56

    Article  CAS  Google Scholar 

  38. Scopacasa F, Wishart JM, Need AG, Horowitz M, Morris HA, Nordin BEC (2002) Bone density and bone-related biochemical variables in normal men: a longitudinal study. J Gerontol Med Sci Biol Sci 57A:M385–M391

    Google Scholar 

  39. Goemaere SJA, Zmierczak H, van Pottelbergh I, Demuynck R, Myny H, Kaufman JM (2001) Association of bone turnover with longitudinally assessed bone loss in community-dwelling elderly men. J Bone Miner Res 16 (Suppl 1) S395 Abstract Su356

  40. Yoshimura N, Hashimoto T, Sakata K, Morioka S, Kasamatsu T, Cooper C. (1999) Biochemical markers of bone turnover and bone loss at the lumbar spine and femoral neck: the Taiji study. Calcif Tissue Int 65:198–202

    Article  PubMed  CAS  Google Scholar 

  41. Dennison E, Eastell R, Fall CHD, Kellingray S, Wood PJ, Cooper C (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporosis Int 10:384–391

    Article  CAS  Google Scholar 

  42. Szulc P, Garnero P, Marchand F, Dubeouf F, Delmas PD (2005) Biochemical markers of bone formation reflect endosteal bone loss in elderly men - MINOS study. Bone 36:13–21

    Article  PubMed  CAS  Google Scholar 

  43. Luukinen H, Kakonen SM, Pettersson K, Koski K, Laippala P, Lovgren T et al (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15:2473–2478

    Article  PubMed  CAS  Google Scholar 

  44. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study. J Bone Miner Res 20:579–587

    Article  PubMed  Google Scholar 

  45. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE et al (2004) Homocysteine as a predictive factor for hip fractures in elderly persons. N Engl J Med 350:2042–2049

    Article  PubMed  CAS  Google Scholar 

  46. Meurs JBJ van, Dhonukshe-Rutten RAM, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J et al (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  PubMed  Google Scholar 

  47. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K (2005) Homocysteine as a predictive factor for hip fracture in stroke patients. Bone 36:721–726

    Article  PubMed  CAS  Google Scholar 

  48. Dhonukshe-Rutten RAM, Pluijm SMF, de Groot LCPGM, Lips P, Smit JH, van Staveren WA (2005) Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 20:921–929

    Article  PubMed  CAS  Google Scholar 

  49. Ravaglia G, Forti P, Maioli F, Servadei L, Martelli M, Brunetti N et al (2005) Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol Med Sci Biol Sci 60A:1458–1462

    Google Scholar 

  50. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337:230–236

    Article  PubMed  CAS  Google Scholar 

  51. Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8

    Article  PubMed  CAS  Google Scholar 

  52. Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W (2005) Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem 51:2348–2353

    Article  PubMed  CAS  Google Scholar 

  53. Khan M, Yamauchi M, Srisawasdi S, Stiner D, Doty S, Paschalis EP, Boskey AL (2001) Homocysteine decreases chondrocyte-mediated matric mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone 28:387–398

    Article  PubMed  CAS  Google Scholar 

  54. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM et al (2004) Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 89:503–510

    Article  PubMed  CAS  Google Scholar 

  55. Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ et al (2004) Long-term testosterone gel (Androgel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab 89:2085–2098

    Article  PubMed  CAS  Google Scholar 

  56. Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G et al (2001) Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. Clin Endocrinol 54:739–750

    Article  Google Scholar 

  57. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH et al (1999) Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84:1966–1972

    Article  PubMed  CAS  Google Scholar 

  58. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG (2001) Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol Med Sci Biol Sci 56A:M266–M272

    CAS  Google Scholar 

  59. Tenover JS (1992) Effects of testosterone supplementation in the aging male. J Clin Endcrinol Metab 75:1092–1098

    Article  CAS  Google Scholar 

  60. Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A et al (2000) Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab 85:2670–2677

    Article  PubMed  CAS  Google Scholar 

  61. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 339:292–299

    Article  PubMed  CAS  Google Scholar 

  62. Wallach S, Cohen S, Reid DM, Hughes RA, Hosking DJ, Lann RF et al (2000) Effects or risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tissue Int 67:277–286

    Article  PubMed  CAS  Google Scholar 

  63. Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids. Arthrit Rheum 44:202–211

    Article  CAS  Google Scholar 

  64. Lems WF, Lodder MC, Lips P, Bijlsma JWJ, Geusens P, Schrameijer N et al (2006) Positive effect of alendronate on bone mineral density and markers of bone turnover in patients with rheumatoid arthritis on chronic treatement with low-dose prednisone: a randomized, double-blind, placebo-controlled trial. Osteoporos Int 17:716–723

    Article  PubMed  CAS  Google Scholar 

  65. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J et al (2000) Alendronate treatment of osteoporosis in men. N Engl J Med 343:604–610

    Article  PubMed  CAS  Google Scholar 

  66. Reid DM, Adami S, Devogelaer JP, Chines AA (2001) Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif Tissue Int 69:242–247

    Article  PubMed  CAS  Google Scholar 

  67. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch Intern Med 165:1743–1748

    Article  PubMed  CAS  Google Scholar 

  68. Cohen S, Levy RM, Keller M, Boling E, Emkey RD, Greenwald M et al (1999) Risedronate therapy prevents corticosteroid-induced bone loss. A twelve-month, multicenter, randomize, double-blind, placebo-controlled, parallel-group study. Arthrit Rheum 42:2309–2318

    Article  CAS  Google Scholar 

  69. Stepan JJ, Burckhardt P, Hána V (2003) The effcts of three-month intravenous ibandronate on bone mineral density and bone remodeling in Klinefelter’s syndrome: the influence of vitamin D deficiency and hormonal status. Bone 33:589–596

    Article  PubMed  CAS  Google Scholar 

  70. Trovas GP, Lyritis GP, Galanos A, Raptou P, Constantelou EA (2002) A randomized trial of nasal spray salmon calcitonin in men with idiopathic osteoporosis: effects on bone mineral density and bone markers. J Bone Miner Res 17:521–527

    Article  PubMed  CAS  Google Scholar 

  71. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A et al (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17

    Article  PubMed  CAS  Google Scholar 

  72. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men : effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85:3069–3076

    Article  PubMed  CAS  Google Scholar 

  73. Finkelstein JS, Leder BZ, Burnett SA, Wyland JJ, Lee H, de la Paz AV et al (2006) Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J Clin Endocrinol Metab 91:2882–2887

    Article  PubMed  CAS  Google Scholar 

  74. Delmas PD, Chatelain P, Malaval M, Bonne G (1986) Serum bone GLA-protein in growth hormone deficient children. J Bone Miner Res 1:333–338

    PubMed  CAS  Google Scholar 

  75. Bravenboer N, Holzmann PJ, ter Maaten JC, Stuurman LM, Roos JC, Lips P (2005) Effect of long-term growth hormone treatment on bone mass and bone metabolism in growth hormone-deficient men. J Bone Miner Res 20:1778–1784

    Article  PubMed  CAS  Google Scholar 

  76. Johansson AG, Lindh E, Blum WF, Kollerup G, Sorensen OH, Ljunghall S (1996) Effects of growth hormone and insulin-like growth factor I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 81:44–48

    Article  PubMed  CAS  Google Scholar 

  77. Ahmad AM, Thomas J, Clewes A, Hopkins MT, Guzder R, Ibrahim H et al (2003) Effects of growth hormone replacement on parathyroid hormone sensitivity and bone mineral metabolism. J Clin Endocrinol Metab 88:2860–2868

    Article  PubMed  CAS  Google Scholar 

  78. Gillberg P, Mallmin H, Petrén-Mallmin M, Ljunghall S, Nilsson AG (2002) Two years of treatment with recombinant human growth hormone increases bone mineral density in men with idiopathic osteoporosis. J Clin Endocrinol Metab 87:4900–4906

    Article  PubMed  CAS  Google Scholar 

  79. Välimäki MJ, Salmela PI, Salmi J, Viikari J, Kataja M, Turunen H, Soppi E (1999) Effects of 42 months of GH treatment on bone mineral density and bone turnover in GH-deficient adults. Eur J Endocrinol 149:545–554

    Article  Google Scholar 

  80. Hansen TB, Brixen K, Vahl N, Lunde Jorgensen JO, Christiansen JS, Mosekilde L, Hagen C (1996) Effects of 12 months of growth hormone (GH) treatment on calciotropic hormones, calcium homeostasis, and bone metabolism in adults with acquired GH deficiency : a double blind, randomized, placebo-controlled study. J Clin Endocrinol Metab 81:3352–3359

    Article  PubMed  CAS  Google Scholar 

  81. Christmas C, O’Connor KG, Harman SM, Tobin JD, Münzer T, Bellantoni MF et al (2002) Growth hormone and sex steroid effects on bone metabolism and bone mineral density in healthy aged women and men. J Gerontol Med Sci Biol Sci 57A:M12–M18

    CAS  Google Scholar 

  82. Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN et al (2006) Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res 21:324–331

    Article  PubMed  CAS  Google Scholar 

  83. Sambrook P, Chen C, March L, Cameron I, Cumming R, Simpson J, Seibel M (2006) High bone turnover is an independent predictor of mortality in frail elderly. J Bone Miner Res 21:549–555

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Szulc.

Additional information

This manuscript was prepared as a part of the NEMO study (Thematic Network on the Osteoporosis in Men).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szulc, P., Kaufman, J.M. & Delmas, P.D. Biochemical assessment of bone turnover and bone fragility in men. Osteoporos Int 18, 1451–1461 (2007). https://doi.org/10.1007/s00198-007-0407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0407-z

Keywords

Navigation