Skip to main content

Advertisement

Log in

Centimeter-scale stream substratum heterogeneity and metabolic rates

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial heterogeneity of substrata in streams may influence dissolved oxygen (O2) transport and nutrient forms. We studied the relationship between scales of substratum heterogeneity and O2. Heterogeneous systems could have greater respiration rates as a result of increased interfacial surfaces in the biogeochemically active areas between oxic and anoxic zones. We used grids with twelve 7 × 3.5 cm cells; half the cells were filled with sand and the other half with gravel to quantify the effect of centimeter-scale heterogeneity on respiration. The sand and gravel cells were arranged within the grids to give low, medium, and high heterogeneity. Grids were incubated for 15–17 days in a prairie stream, and then whole grid respiration was analyzed in closed recirculating chambers. Depth to anoxia and substratum metabolism were calculated from O2 microelectrode profiles measured in each cell of the grid and compared with data from natural stream transects from agricultural, urban, and prairie land use types. Shannon–Weaver (H′) diversity and “probability of change” indices were also used to compare heterogeneity of the grids to the natural stream transects. No significant differences were found among grid heterogeneity levels for respiration rate, but the anoxic interface was deeper in the gravel of higher heterogeneity grids, probably due to greater transport rates of O2 in the coarse-grained substratum. The H′ and probability of change indices indicated that the grids had levels of heterogeneity within the range of real streams. Grid depth to anoxia and substratum metabolism rates were similar to those found in streams, though less variable. In streams, H′ and probability of change values showed a slight difference among land use types, with some urban and agricultural sites displaying very low heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, B. L., M. R. Grace, B. T. Hart & K. E. N. Vanderkruk, 2008. Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream. Journal of the North American Benthological Society 27: 581–592.

    Article  Google Scholar 

  • Carlton, R. G. & R. Wetzel, 1987. Distributions and fates of oxygen in periphyton communities. Canadian Journal of Botany 65: 1031–1037.

    Article  CAS  Google Scholar 

  • Dent, C. L., N. B. Grimm & S. G. Fisher, 2001. Multiscale effects of surface-subsurface exchange on stream water nutrient concentrations. Journal of the North American Benthological Society 20: 162–181.

    Article  Google Scholar 

  • Dodds, W. K., 1991. Micro-environmental characteristics of filamentous algal communities in flowing freshwaters. Freshwater Biology 25: 199–209.

    Article  Google Scholar 

  • Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.

    CAS  Google Scholar 

  • Dodds, W. K. & J. Brock, 1998. A portable chamber for in situ determination of benthic metabolism. Freshwater Biology 39: 49–59.

    Article  Google Scholar 

  • Dodds, W. K., R. E. Hutson, A. C. Eichem, M. A. Evans, D. A. Gudder, K. M. Fritz & L. Gray, 1996a. The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia 333: 151–159.

    Article  CAS  Google Scholar 

  • Dodds, W. K., C. A. Randel & C. C. Edler, 1996b. Microcosms for aquifer research: application to colonization of various sized particles by ground-water microorganisms. Groundwater 34: 756–759.

    CAS  Google Scholar 

  • Dodds, W. K., M. A. Evans-White, N. M. Gerlanc, L. Gray, D. A. Gudder, M. J. Kemp, A. L. López, D. Stagliano, E. A. Straus, J. L. Tank, M. R. Whiles & W. M. Wollheim, 2000. Quantification of the nitrogen cycle in a prairie stream. Ecosystems 3: 574–589.

    Article  CAS  Google Scholar 

  • Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the edge: the ecology of Great Plains prairie streams. BioScience 54: 205–216.

    Article  Google Scholar 

  • Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanography 40: 159–164.

    CAS  Google Scholar 

  • Fuss, C. L. & L. A. Smock, 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwater Biology 36: 339–349.

    Article  Google Scholar 

  • Gallon, C., L. Hare & A. Tessier, 2008. Surviving in anoxic surroundings: how burrowing aquatic insects create an oxic microhabitat. Journal of the North American Benthological Society 27: 570–580.

    Article  Google Scholar 

  • Glud, R. N., N. B. Ramsing & N. P. Revsbech, 1992. Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. Journal of Phycology 28: 51–60.

    Article  Google Scholar 

  • Gray, L. J. & W. K. Dodds, 1998. Structure and dynamics of aquatic communities. In Knapp, A. K., J. M. Briggs, D. C. Hartnett & S. L. Collins (eds), Grassland Dynamics: Long-term Ecological Research in Tallgrass Prairie. Oxford University Press, New York: 177–189.

    Google Scholar 

  • Gray, L. J., G. L. Macpherson, J. K. Koelliker & W. K. Dodds, 1998. Hydrology and aquatic chemistry. In Knapp, A. K., J. M. Briggs, D. C. Hartnett & S. L. Collins (eds), Grassland Dynamics: Long-term Ecological Research in Tallgrass Prairie. Oxford University Press, New York: 159–176.

    Google Scholar 

  • Jacinthe, P. A., P. M. Groffman, A. J. Gold & A. Mosier, 1998. Patchiness in microbial nitrogen transformations in groundwater in a riparian forest. Journal of Environmental Quality 27: 156–164.

    CAS  Google Scholar 

  • Kemp, M. J. & W. K. Dodds, 2001a. Centimeter-scale patterns in dissolved oxygen and nitrification rates in a prairie stream. Journal of the North American Benthological Society 20: 347–357.

    Article  Google Scholar 

  • Kemp, M. J. & W. K. Dodds, 2001b. Spatial and temporal patterns of nitrogen concentrations in pristine and agriculturally-influenced streams. Biogeochemistry 53: 125–141.

    Article  CAS  Google Scholar 

  • Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.

    Article  Google Scholar 

  • Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Martí, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. McDowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.

    Article  CAS  Google Scholar 

  • Murdock, J. N. & W. K. Dodds, 2007. Linking benthic algal biomass to stream substratum topography. Journal of Phycology 43: 449–460.

    Article  Google Scholar 

  • O’Brien, J. M., W. K. Dodds, K. C. Wilson, J. N. Murdock & J. Eichmiller, 2007. The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84: 31–49.

    Article  CAS  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333–365.

    Article  Google Scholar 

  • Rathbun, R. E., D. W. Stephens, D. J. Shultz & D. Y. Tai, 1978. Laboratory studies of gas tracers for reaeration. Proceedings of the American Society of Civil Engineering 104: 215–229.

    CAS  Google Scholar 

  • Revsbech, N. P. & B. B. Jørgensen, 1986. Microelectrodes: their use in microbial ecology. In Marshall, K. C. (ed.), Advances in Microbial Ecology, Volume 9. Plenum Press, New York: 293–352.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen & O. Brix, 1981. Primary production of microalgae in sediments measured by oxygen microprofiles, H14CO2-fixation and oxygen exchange methods. Limnology and Oceanography 26: 717–730.

    Article  CAS  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Sheibley, R. W., J. H. Duff, A. P. Jackman & F. J. Triska, 2003. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: integrating hydrologic and biological processes using sediment perfusion cores. Limnology and Oceanography 48: 1129–1140.

    Article  CAS  Google Scholar 

  • Stevens, M. H. H. & K. W. Cummins, 1999. Effects of long-term disturbance on riparian vegetation and in-stream characteristics. Journal of Freshwater Ecology 14: 1–17.

    Google Scholar 

  • Wilson, K.·C., 2005. Hyporeic oxygen flux and substratum spatial heterogeneity: effects on whole-stream dynamics. Masters Thesis, Kansas State University, Manhattan: 62 pp.

  • Young, R. G. & A. D. Huryn, 1998. Comment: improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 1784–1785.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kim With for input, Dolly Gudder for editing the manuscript, and Konza LTER-NSF and the LINXII NSF project for funding. This is contribution no. 05-329-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kymberly C. Wilson.

Additional information

Handling editor: Robert Bailey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, K.C., Dodds, W.K. Centimeter-scale stream substratum heterogeneity and metabolic rates. Hydrobiologia 623, 53–62 (2009). https://doi.org/10.1007/s10750-008-9647-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9647-y

Keywords

Navigation