Skip to main content

Advertisement

Log in

Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus?

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We investigated whether phosphorus limitations of primary producers propagate upwards through the food web, not only to the primary consumer level but also onto the secondary consumers’ level. A tri-trophic food chain was used to assess the effects of phosphorus-limited phytoplankton (the cryptophyte Rhodomonas salina) on herbivorous zooplankters (the copepod Acartia tonsa) and finally on zooplanktivores (the ctenophore Pleurobrachia pileus). The algae were cultured in phosphorus-replete and phosphorus-limited media before being fed to two groups of copepods. The copepods in turn were fed to the top predator, P. pileus, in a mixture resulting in a phosphorus-gradient, ranging from copepods having received only phosphorus-replete algae to copepods reared solely on phosphorus-limited algae. The C:P ratio of the algae varied significantly between the two treatments, resulting in higher C:P ratios for those copepods feeding on phosphorus-limited algae, albeit with a significance of 0.07. The differences in the feeding environment of the copepods could be followed to Pleurobrachia pileus. Contrary to our expectations, we found that phosphorus-limited copepods represented a higher quality food source for P. pileus, as shown by the better condition (expressed as nucleic acid content) of the ctenophore. This could possibly be explained by the rather high C:P ratios of ctenophores, their resulting low phosphorus demand and relative insensitivity to P deficiency. This might potentially be an additional explanation for the observed increasing abundances of gelatinous zooplankton in our increasingly phosphorus-limited coastal seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anninsky BE, Finenko GA, Abolmasova GI, Hubareva ES, Svetlichny LS, Bat L, Kideys AE (2005) Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. J Mar Biol Assoc UK 85:549–561

    Article  CAS  Google Scholar 

  • Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485

    Google Scholar 

  • Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330

    Article  PubMed  Google Scholar 

  • Boersma M, Kreutzer C (2002) Life at the edge: is food quality really of minor importance at low quantities? Ecology 83:2552–2561

    Article  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488

    Article  Google Scholar 

  • Borodkin SO, Korzhikova LI (1991) The chemical composition of the ctenophore Mnemiopsis leidyi and its role in the nutrient transformation in the Black Sea. Okeanologiya 31:754–758

    CAS  Google Scholar 

  • Carrillo P, Villar-Argaiz M, Medina-Sanchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23:537–547

    Article  CAS  Google Scholar 

  • Clemmesen C, Buhler V, Carvalho G, Case R, Evans G, Hauser L, Hutchinson WF, Kjesbu OS, Mempel H, Moksness E, Otteraa H, Paulsen H, Thorsen A, Svaasand T (2003) Variability in condition and growth of Atlantic cod larvae and juveniles reared in mesocosms: environmental and maternal effects. J Fish Biol 62:706–723

    Article  Google Scholar 

  • Daly KL (2004) Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep-Sea Res Part II-Top Stud Oceanogr 51:2139–2168

    Article  CAS  Google Scholar 

  • Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Article  PubMed  Google Scholar 

  • DeMott WR, Gulati RD, Siewertsen K (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161

    CAS  Google Scholar 

  • Dickmann EM, Newell JM, Gonzalez MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Hayakawa K, Urabe J (2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Ferron A, Leggett WC (1994) An appraisal of condition measures for marine fish larvae. Adv Mar Biol 30:217–303

    Article  Google Scholar 

  • Fraser JH (1970) The ecology of the ctenophore Pleurobrachia pileus in scottish waters. ICES J Mar Res 33:149–168

    Article  Google Scholar 

  • Frost PC, Ebert D, Smith VH (2008) Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host. Ecology 89:313–318

    Article  PubMed  Google Scholar 

  • Gaedke U, Hochstadter S, Straile D (2002) Interplay between energy limitation and nutritional deficiency: empirical data and food web models. Ecol Monogr 72:251–270

    Article  Google Scholar 

  • Gibbons MJ, Painting SJ (1992) The effects and implications of container volume on clearance rates of the ambush entangling predator Pleurobrachia pileus (Ctenophora: Tentaculata). J Exp Mar Biol Ecol 163:199–208

    Article  Google Scholar 

  • Gorokhova E (2003) Relationships between nucleic acid levels and egg production rates in Acartia bifilosa: implications for growth assessment of copepods in situ. Mar Ecol Prog Ser 262:163–172

    Article  CAS  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley, New York

    Book  Google Scholar 

  • Greve W (1970) Cultivation experiments on North Sea ctenophores. Helgol Wiss Meeresunters 20:304–317

    Article  Google Scholar 

  • Greve W (1972) Ökologische Untersuchungen an Pleurobrachia pileus 2. Laboruntersuchungen. Helgol Wiss Meeresunters 23:141–164

    Article  Google Scholar 

  • Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288

    Article  Google Scholar 

  • Guillard RR, Ryther J (1962) Studies of marine planktonic diatoms. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hamer H (2008) On the feeding ecology of ctenophores in the German Bight. Diploma thesis, University of Kiel

  • IPCC (2007) Intergovernmental panel on climate change: climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kremer P (1977) Respiration and excretion by ctenophore Mnemiopsis leidyi. Mar Biol 44:43–50

    Article  CAS  Google Scholar 

  • Kremer P (1982) Effect of food availability on the metabolism of the ctenophore Mnemiopsis mccradyi. Mar Biol 71:149–156

    Article  Google Scholar 

  • Kremer P, Canino MF, Gilmer RW (1986) Metabolism of epipelagic tropical ctenophores. Mar Biol 90:403–412

    Article  Google Scholar 

  • Le Pecq JB, Paoletti C (1966) A new fluorometric method for RNA and DNA determination. Anal Biochem 17:100–107

    Article  CAS  PubMed  Google Scholar 

  • Malzahn AM, Aberle N, Clemmesen C, Boersma M (2007a) Nutrient limitation of primary producers affects planktivorous fish condition. Limnol Oceanogr 52:2062–2071

    CAS  Google Scholar 

  • Malzahn AM, Clemmesen C, Wiltshire KH, Laakmann S, Boersma M (2007b) Comparative nutritional condition of larval dab Limanda limanda and lesser sandeel Ammodytes marinus in a highly variable environment. Mar Ecol Prog Ser 334:205–212

    Article  CAS  Google Scholar 

  • Melzner F, Forsythe JW, Lee PG, Wood JB, Piatkowski U, Clemmesen C (2005) Estimating recent growth in the cuttlefish Sepia officinalis: are nucleic acid-based indicators for growth and condition the method of choice? J Exp Mar Biol Ecol 317:37–51

    Article  CAS  Google Scholar 

  • Parslow-Williams P, Atkinson RJA, Taylor AC (2001) Nucleic acids as indicators of nutritional condition in the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser 211:235–243

    Article  CAS  Google Scholar 

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269

    Article  Google Scholar 

  • Reeve MR, Walter MA, Ikeda T (1978) Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limnol Oceanogr 23:740–751

    Google Scholar 

  • Schneider G (1989) Zur chemischen Zusammensetzung der Ctenophore Pleurobrachia pileus in der Kieler Bucht. Helgol Wiss Meeresunters 43:67–76

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, George NB (2000) Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81:127–140

    Article  Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Sterner RW, Clasen J, Lampert W, Weisse T (1998) Carbon: phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150

    Article  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42:1436–1443

    Article  CAS  Google Scholar 

  • Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Chang Biol 9:818–825

    Article  Google Scholar 

  • van der Zee C, Chou L (2005) Seasonal cycling of phosphorus in the Southern Bight of the North Sea. Biogeosciences 2:27–42

    Article  Google Scholar 

  • Van Nieuwerburgh L, Wanstrand I, Snoeijs P (2004) Growth and C:N:P ratios in copepods grazing on N- or Si-limited phytoplankton blooms. Hydrobiologia 514:57–72

    Article  Google Scholar 

  • Vermaat JE, McQuatters-Gollop A, Eleveld MA, Gilbert AJ (2008) Past, present and future nutrient loads of the North Sea: causes and consequences. Estuar Coast Shelf Sci 80:53–59

    Article  CAS  Google Scholar 

  • Villar-Argaiz M, Medina-Sanchez JM, Carrillo P (2002) Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83:1899–1914

    Article  Google Scholar 

  • White TCR (1993) The inadequate environment. Springer, Berlin

    Google Scholar 

  • Wiltshire KH, Malzahn AM, Kai Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring blooms dynamics: an analysis of long term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Google Scholar 

  • Youngbluth MJ, Kremer P, Bailey TG, Jacoby CA (1988) Chemical-composition, metabolic rates and feeding-behavior of the midwater ctenophore Bathocyroe fosteri. Mar Biol 98:87–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by the German Science Foundation (DFG AB 289/2-1) and is part of the AWI Food Web project. We thank all colleagues in the Food Web projects and three anonymous reviewers for stimulating discussions and helpful comments to improve earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherina L. Schoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoo, K.L., Aberle, N., Malzahn, A.M. et al. Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus?. Aquat Ecol 44, 233–242 (2010). https://doi.org/10.1007/s10452-009-9265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9265-4

Keywords

Navigation