Skip to main content
Log in

Identification of quasi-optimal regions in the design space using surrogate modeling

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The use of Surrogate Based Optimization (SBO) is widely spread in engineering design to find optimal performance characteristics of expensive simulations (forward analysis: from input to optimal output). However, often the practitioner knows a priori the desired performance and is interested in finding the associated input parameters (reverse analysis: from desired output to input). A popular method to solve such reverse (inverse) problems is to minimize the error between the simulated performance and the desired goal. However, there might be multiple quasi-optimal solutions to the problem. In this paper, the authors propose a novel method to efficiently solve inverse problems and to sample Quasi-Optimal Regions (QORs) in the input (design) space more densely. The development of this technique, based on the probability of improvement criterion and kriging models, is driven by a real-life problem from bio-mechanics, i.e., determining the elasticity of the (rabbit) tympanic membrane, a membrane that converts acoustic sound wave into vibrations of the middle ear ossicular bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aernouts J, Couckuyt I, Crombecq K, Dirckx J (2010) Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling. Int J Eng Sci 48:599–611

    Article  Google Scholar 

  2. Aernouts J, Soons J, Dirckx J (2010) Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study. Hear Res 263:177–182

    Article  Google Scholar 

  3. Barton R (2005) Issues in development of simultaneous forward-inverse metamodels. In: Proceedings of the Winter simulation conference, pp 209–217. doi:10.1109/WSC.2005.1574253

  4. Bonnans J, Gilbert J, Lemaréchal C, Sagastizábal C (2006) Numerical optimization: theoretical and practical aspects. Springer, Berlin

    MATH  Google Scholar 

  5. Couckuyt I, Declercq F, Dhaene T, Rogier H (2010) Surrogate-based infill optimization applied to electromagnetic problems. Advan Des Optimiz Microwave/rf Circuits Systems (special issue) 20(5):492

    Google Scholar 

  6. Couckuyt I, Gorissen D, DeTurck F, Dhaene T (2010) Inverse surrogate modeling: output performance space sampling. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference

  7. Crombecq K, Dhaene T (2010) Generating sequential space-filling designs using genetic algorithms and monte carlo methods. In: Simulated evolution and learning (SEAL-2010), pp 80–84

  8. Dam E, van Husslage B, den Hertog D, Melissen J (2007) Maximin Latin hypercube designs in two dimensions. Operat Res 55(1):158–169

    Article  MathSciNet  MATH  Google Scholar 

  9. Decraemer W, Funnell W (2008) Anatomical and mechanical properties of the tympanic membrane, chronic otitis media. Pathogenesis-oriented therapeutic management. Kugler Publications, The Hague

  10. Elkhouri N, Liu H, Funnell W (2006) Low-frequency finite-element modelling of the gerbil middle ear. J Assoc Res Otolaryngol 7:399–411

    Article  Google Scholar 

  11. Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Chichester

    Book  Google Scholar 

  12. Gan R, Sun Q, Feng B, Wood M (2006) Acoustic-structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:395–404

    Article  Google Scholar 

  13. Gibbs M, Mackay DJC (1997) Efficient implementation of gaussian processes. Tech Rep, Department of Physics, Cavendish Laboratory, Cambridge University

  14. Gorissen D, Crombecq K, Couckuyt I, Demeester P, Dhaene T (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res 11:2051–2055, http://sumo.intec.ugent.be/

    Google Scholar 

  15. Hadamard J (1902) Sur les problèmes aux dérivées partielles et leur signification physique. Tech Rep 49–52, Princeton University Bulletin

  16. Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimization without the lipschitz constant. Optimiz Theory Appl 79(1):157–181

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. Global Optimiz 21:345–383

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optimiz 13(4):455–492. doi:10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleijnen J, van Beers W, van Nieuwenhuyse I (2011) Expected improvement in efficient global optimization through bootstrapped kriging. Journal of Global Optimization 51:1–15. doi:10.1007/s10898-011-9741-y

    Article  Google Scholar 

  20. Picheny V, Ginsbourger D, Roustant O, Haftka R (2010) Adaptive designs of experiments for accurate approximation of a target region. Mech Des 132(7):9

    Google Scholar 

  21. Ponweiser W, Wagner T, Vincze M (2008) Clustered multiple generalized expected improvement: A novel infill sampling criterion for surrogate models. In: Congress on Evolutionary Computation

  22. Sacks J, Welch WJ, Mitchell T, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  MATH  Google Scholar 

  23. Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer series in statistics. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  24. Sasena M (2002) Flexibility and efficiency enhancements for constrainted global design optimization with kriging approximations. Ph.D. thesis, University of Michigan

  25. Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis, University of Waterloo

  26. Sóbester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct Multidisciplinary Optimiz 27:371–383(13)

    Article  Google Scholar 

  27. Staum J (2009) Better simulation metamodeling: The why, what, and how of stochastic kriging. In: Proceedings of the Winter Simulation Conference

  28. Wang G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380. doi:10.1115/1.2429697

    Article  MathSciNet  Google Scholar 

Download references

Acknowlegments

Ivo Couckuyt and Jef Aernouts are funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Couckuyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couckuyt, I., Aernouts, J., Deschrijver, D. et al. Identification of quasi-optimal regions in the design space using surrogate modeling. Engineering with Computers 29, 127–138 (2013). https://doi.org/10.1007/s00366-011-0249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0249-3

Keywords

Navigation