Skip to main content
Log in

An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

An improved everted gut sac system has been developed in which the sacs were carefully prepared from rat small intestine and incubated in tissue culture medium. Under these conditions, the tissue showed good morphology at the electron microscope level, and was metabolically active for up to 2 h at 37° C. Mannitol, an established probe of paracellular transport, was transported from the mucosal to the serosal side of the sac tissue. Excellent kinetic data showed that transport was linear up to 75 min and over a wide range of concentrations (0.025– (10 mM). Mannitol was not detected in the tissue and transport was enhanced by EGTA, confirming the paracellular route of passage. Sacs prepared from colon also showed mannitol transport, but at a slower rate. Comparisons with Caco-2 cell monolayers showed that the everted sacs exhibited higher levels of paracellular transport than the cultured cell line. The improved everted gut sac system is an inexpensive and relatively simple technique with considerable potential as an in vitro tool to study the mechanisms, kinetics and enhancement of drug absorption across the small intestine at different sites and in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Inui K. I., Okano T., Maegawa H., Kato M., Takano M., Hori R. (1988): H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: Difference of transport characteristics between cefixime and cephradine. J. Pharmacol. Exp. Ther., 247, 235–241.

    PubMed  CAS  Google Scholar 

  2. Dantzig A., Bergin L. (1990): Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta, 1027, 211–217.

    Article  PubMed  CAS  Google Scholar 

  3. Pappenheimer JR (1993): On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am. J. Physiol., 265, Gastrointestinal liver physiology, 28, G409-G417.

    PubMed  CAS  Google Scholar 

  4. Madara J. L. (1989): Loosening Tight Junctions. J. Clin. Invest., 83, 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  5. Uhing M. R., Kimura R.E. (1995): Active transport of 3-O-methyl-glucose by the small intestine in chronically catheterized rats. J. Clin. Invest., 95, 2799–2805.

    Article  PubMed  CAS  Google Scholar 

  6. Uhing M.R., Kimura R.E. (1995): The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. J. Clin. Invest., 95, 2790–2798.

    Article  PubMed  CAS  Google Scholar 

  7. Artursson P. (1990): Epithelial transport of drugs in cell culture. I: A model or studying the passive diffusion of drugs over intestinal absorbtive (CaCo-2) cells. J. Pharm. Sci., 79, (6), 476–482.

    Article  PubMed  CAS  Google Scholar 

  8. Hidalgo I. J., Raub T. J., Borchardt R.T. (1989): Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736–749.

    PubMed  CAS  Google Scholar 

  9. Wilson G., Hassan I.F., Dix C.J., et al. (1990): Transport and permeability properties of human CaCo-2 cells: an in vitro model of intestinal epithelial cell barrier. J. Controlled Release, 11, 25–40.

    Article  CAS  Google Scholar 

  10. Boulenc X., Marti E., Joyeux H., Roques C., Berger Y., Fabre G. (1993): Importance of the paracellular pathway for the transport of a new bisphosphonate using the human CaCo-2 monolayers model. Biochem. Pharmacol., 46, (9), 1591–1600.

    Article  PubMed  CAS  Google Scholar 

  11. Gan L. S., Eads C., Niederer T., et al. (1994): Use of Caco-2 cells as an in vitro intestinal absorption and metabolism model. Drug Dev. Indust. Pharm., 20, (4), 615–631.

    Article  CAS  Google Scholar 

  12. Artursson P., Magnusson C. (1990): Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelia (CaCo-2) cells. J. Pharm. Sci., 79, (7), 595–600.

    Article  PubMed  CAS  Google Scholar 

  13. Anderberg E. K., Artursson P. (1993): Epithelial transport of drugs in cell culture. VIII: effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. J. Pharm. Sci., 82, 4), april., 392–398.

    Article  PubMed  CAS  Google Scholar 

  14. Anderberg E. K., Lindmark T., Artursson P. (1993): Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res., 10, (6), 857–864.

    Article  PubMed  CAS  Google Scholar 

  15. Anderberg E. K., Nystrom C., Artursson P. (1992): Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J. Pharm. Sci., 81, (9), 879–887.

    Article  PubMed  CAS  Google Scholar 

  16. Schasteen C. S., Donovan M. G., Cogburn J. N. (1992): A novel in vitro screen to discover agents which increase the absorption of molecules across the intestinal epithelium. J. Controlled Release, 21, 49–62.

    Article  CAS  Google Scholar 

  17. Artursson P., Karlson J. (1991): Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Communi., 175, (3), 880–885.

    Article  CAS  Google Scholar 

  18. Peterson G.L. (1986) Determination of total protein. Meth. Enzymol. 91, 95–119.

    Article  Google Scholar 

  19. Dahlqvist A. (1968): Anal. Biochem., 22, 99–105.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson T.H., Wiseman G. (1954): The use of sacs of everted small intestine for the study of the tranference of substances from the mucosal to the serosal surface. J. Physiol., 123, 116–125.

    PubMed  CAS  Google Scholar 

  21. Levine R.R., McNary W.F., Kornguth P.J., Le Blanc R. (1970): Histological reevaluation of everted gut technique for studying intestinal absorption. Eur. J. Pharm., 9, 211–219.

    Article  CAS  Google Scholar 

  22. Plumb J. A., Burston D., Baker T. G., Gardner M. L. G. (1987): A comparison of the structural integrity of several commonly used preparations of rat small intestine in vitro. Clin. Sci., 73, 53–59.

    PubMed  CAS  Google Scholar 

  23. Bridges J. (1980) Uptake of macromolecules by rat small intestine in vitro. [Ph.D]: Keele University

  24. Rowland R. N., Woodley J. F. (1981): Uptake of free and liposome-entrapped 125I- labelled PVP by rat intestinal sacs in vitro: evidence for endocytosis. Biosci. Reports, 1, 399–406.

    Article  CAS  Google Scholar 

  25. Rowland R. N., Woodley J. F. (1981): The uptake of the distearyphosphatidylcholine/cholesterol liposomes by rat intestinal sacs in vitro. Biochim. Biophys. Acta, 673, 217–223.

    PubMed  CAS  Google Scholar 

  26. Rowland R. N., Woodley J. F. (1981): Uptake of free and liposome-entrapped horse radish peroxidase by rat intestinal sacs in vitro. FEBS Letters, 123, 41–44.

    Article  PubMed  CAS  Google Scholar 

  27. Rowland R. N., Woodley J. F. (1981): Uptake of free and liposome-entrapped insulin by rat intestinal sacs in vitro. Biosci. Reports, 1, 345–352.

    Article  CAS  Google Scholar 

  28. Blundell S, Woodley JF, Ulbrich K, Strohalm J, Duncan R (1993): Uptake and transfer of soluble polymers across the small intestine. Proceedings International Symposium Controlled Release of Bioactive Materials, 20, 328–329.

    Google Scholar 

  29. Pato J, Mora M, Naisbett B, Woodley JF, Duncan R (1994): The uptake of poly(N-vinylpyrrolidone-co-maleic acid) by the adult rat small intestine in vitro: effect of chemical structure. International Journal of Pharmaceutics, 104, 227–237.

    Article  CAS  Google Scholar 

  30. Naisbett B, Woodley JF (1994): The potential of tomato lectin in oral drug delivery systems. 2. Mechanism of uptake in vitro. International Journal of Pharmaceutics, 110, 127–136.

    Article  CAS  Google Scholar 

  31. Gumbiner B (1987): Structure, biochemistry, and assembly of epithelial tight junctions. American Journal of Physiology, 253, Cell Physiol.22., C749-C758.

    PubMed  CAS  Google Scholar 

  32. Hochman J, Artursson P (1994): Mechanisms of absorption enhancement and gight junction regulation. Journal of Controlled Release, 29, 253–267.

    Article  CAS  Google Scholar 

  33. Gan LS, Hsyu PH, Pritchard JF, Thakker D (1993): Mechanism of intestinal absorption of ranitidine and ondasetron: transport accross Caco-2 cell monolayers. Pharmaceutical Research, 10, N12, 1722–1725.

    Article  PubMed  CAS  Google Scholar 

  34. Collares-Buzato CB, McEwan GTA, Jepson MA, Simmons NL, Hirst BH (1994): Paracellular barrier and junctional protein distribution depend on the basolateral extracellular Ca2+ in cultured epithelia. Biochimica Biophysica Acta, 1222, 147–158.

    CAS  Google Scholar 

  35. Collett A, Sims E, He YL, Rowland M, Warshurst G (1995): Comparison of CaCo-2 and HT29-18C1 colonic cell lines as models for the prediction of in vivo drug absorption. J. Physiol., 482, 34P-35P.

    Google Scholar 

  36. Bjarnason I (1994): Intestinal permeability. Gut, supplement 1, S18-S22.

    Article  Google Scholar 

  37. Artursson P, Ungell A-L, Lofroth J-E (1993): Selective paracellular permeability in two models of intestinal absorption: cultured layers of human intestinal epithelial cells and rat intestinal segments. Pharmaceutical Research, 10, 8, 1123–1129.

    Article  PubMed  CAS  Google Scholar 

  38. Artursson P, Lindmark T, Davis SS, Illum L (1994): Effect of chitosan on the permeability of monoloayers of intestinal epithelial cells (Caco-2). Pharmaceutical Research, 11, 9, 1358–1361.

    Article  PubMed  CAS  Google Scholar 

  39. Chadwick VS, Phillips SF, Hoffman AF (1977): Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II Application to normal and abnormal permeability states in man and animals. Gastroenterology, 7 3, 247–251.

    Google Scholar 

  40. Teahon K, Patel S, Menzies IS, Bjarnason I (1993): Polyethylene glycol (PEG) 400 is unsuitable for assessing intestinal paracellular permeability. Gastroenterology, 104, 4, A283.

    Google Scholar 

  41. Iqbal TH, Cox MA, Lewis KO, Cooper BT (1995): Polyethylene glycol (PEG) as a marker of small intestinal permeability. Gut, 36, 6, 946–947.

    Article  PubMed  CAS  Google Scholar 

  42. Nellans HN (1991): Mechanism of peptide and protein absorption. (1) Paracellular intestinal transport: modulation of absorption. Advanced Drug Delivery Reviews, 7, 339–364.

    Article  CAS  Google Scholar 

  43. Jackson MJ. In: Johnson LR, ed. Physiology of the Gastrointestinal Tract. New York: Raven Press, 1987:1597–1621.

    Google Scholar 

  44. Lohikangas L, Wilen M, Einarsson M, Artursson P (1994): Relative contribution of phosphatidylcholine and monoglyceride to absorption enhancement of low molecular weight heparin(Fragmin) by a new lipid-based drug delivery system in monolayers of human intestinal epithelial Caco-2 cells and after rectal administration to rabbits. European Journal of Pharmaceutical Sciences, 1, 307–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthe, L., Woodley, J.F., Kenworthy, S. et al. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. European Journal of Drug Metabolism and Pharmacokinetics 23, 313–323 (1998). https://doi.org/10.1007/BF03189357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189357

Keywords

Navigation