Skip to main content
Log in

Drying of porous building materials: hydraulic diffusivity and front propagation

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

One-dimensional drying of a porous building material is modelled as a nonlinear diffusion process. The most difficult case of strong surface drying when an internal drying front is created is treated in particular. Simple analytical formulae for the drying front and moisture profiles during second stage drying are obtained when the hydraulic diffusivity is known. The analysis demonstrates the origin of the constant drying front speed observed elsewhere experimentally. Application of the formulae is illustrated for an exponential diffusivity and applied to the drying of a fired clay brick.

Résumé

Le séchage d'un matériau poreux est décrit par l'équation de diffusion non linéaire. Pour un coefficient de diffusion donné, des formules analytiques simples sont obtenues pour les profils hydriques et pour le front de séchage. Le cas, difficile à traiter, où la surface du matériau est éventuellement sèche, est considéré en détail. L'analyse montre l'origine de la vitesse constante du front de séchage, qui a été observée dans des études expérimentales indépendantes. L'application des formules au séchage d'une brique d'argile est illustrée pour un coefficient de diffusion qui dépend exponentiellement du contenu hydrique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pel, L., ‘Moisture transport in porous building materials’, Ph. D. Thesis, Eindhoven University of Technology, The Netherlands (1995).

    Google Scholar 

  2. Pel, L., Brocken, H. and Kopinga, K. ‘Determination of moisture diffusivity in porous media using moisture concentration profiles’,Int. J. Heat and Mass Transfer 39 (1996) 1273–1280.

    Article  Google Scholar 

  3. Crank, J., ‘The Mathematics of Diffusion’, (Clarendon Press, Oxford, 1975.

    MATH  Google Scholar 

  4. Crausse, P., Laurent, J.P. et Perrin, B., ‘Influence des phénomènes d'hystérésis sur les propriétés hydriques de matériaux poreux: comparaison de deux modèles de simulation du comportement thermohydrique de parois de bâtiment’,Revue Générale de Thermique 35 (1996) 95–106.

    Article  Google Scholar 

  5. Landman, K.A., Pel, L. and Kaasschieter, E.F., ‘Analytic modelling of drying of porous materials’,Mathematical Engineering in Industry 8 (2) (2001) 89–122.

    Article  Google Scholar 

  6. Pel, L., Landman, K.A. and Kaasschieter, E.F., ‘Analytic solution for the non-linear drying problem’,Int. J. Heat and Mass Transfer 45 (15) (2002) 3173–3180.

    Article  Google Scholar 

  7. Parslow, J., Lockington, D. and Parlange, J.-Y., ‘A new perturbation expansion for horizontal infiltration and sorptivity estimates’Transport in Porous Media 3 (1988) 133–144.

    Article  Google Scholar 

  8. Hall, C., ‘Barrier performance of concrete: a review of fluid transport theory’,Mater. Struct. 27 (1994) 291–306.

    Article  Google Scholar 

  9. Lockington, D.A., Parlange, J.-Y., and Dux, P.F., ‘Sorptivity and estimating water penetration in unsaturated concrete’,Mater. Struct. 32 (1999) 342–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockington, D.A., Parlange, J.Y., Barry, D.A. et al. Drying of porous building materials: hydraulic diffusivity and front propagation. Mat. Struct. 36, 448–452 (2003). https://doi.org/10.1007/BF02481524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481524

Keywords

Navigation