Skip to main content
Log in

Nandrolone decanoate: Pharmacological properties and therapeutic use in osteoporosis

  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Summary

The therapeutic profile on bone of nandrolone decanoate is that of inhibitor of bone resorption with temporary increase in bone formation, followed by an absence of suppression of bone formation, indicating uncoupling of bone resorption and formation. This results is an increase in bone mineral content at the proximal and distal radius, and in some patients at the lumbar spine. Furthermore, nandrolone decanoate increases calcium balance and muscle mass, diminishes vertebral pain and increases the mobility of the spine. Virilization occurred in around 50% of the patients (mainly hoarseness and/or hirsutism), and 9% of the patients dropped out because of this reason. A dose of 50 mg every 3 to 4 weeks is indicated in the treatment of osteoporosis in women, especially when they have low muscle mass, associated debilitating disease, and in patients with corticosteroid induced osteoporosis. It should only be prescribed after the age of 65 to 75 years to minimize the occurrence of clinical adverse effects and to increase its tolerability, which is higher in this group. Although some effects are reported on fracture rate, insufficient prospective data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishak, K.G., Zimmerman, H.J. Hepatotoxic effects of the anabolic/androgenic steroids. Semin Liver Dis 1987, 7, 230–236.

    Google Scholar 

  2. Wislon, J.D., Griffin, J.E. The use and misuse of androgens. Metabolism 1980, 29, 1278–1295.

    Google Scholar 

  3. Buchanan, J.R., Hospodar, P., Myers, C., et al. Effect of excess endogenous androgens on bone density in young women. J Clin Endocrinol Metab 1988, 67, 937–943.

    Google Scholar 

  4. Marshall, D.H., Crilly, R.G., Nordin, B.E.C. Androgen and oestrogen levels in normal and osteoporotic postmenopausal women. Br Med J 1977, 21, 177.

    Google Scholar 

  5. Johnston, Jr., C.C., Slemenda, C.W. The role of testosterone in skeletal integrity. (Abstract). 5th Sydney Bone Symposium 1990, April 23–25, S282.

  6. Devogelaer, J.P., Crabbé, J., Nagant de Deuxchaisnes, C. Bone mineral density in Addison's disease: evidence for an effect of adrenal androgens on bone mass. Br Med J 1987, 294, 798–800.

    Google Scholar 

  7. Longcope, C., Baker, R.S., Hui, S.L., et al. Androgen and estrogen dynamics in women with vertebral crush fractures. Maturitas 1984, 6, 309–318.

    Google Scholar 

  8. Davidson, B.J., Ross, R.K., Paganini-Hill, A., et al. Total and free estrogens and androgens in postmenopausal women with hip fractures. J Clin Endocrinol and Metab 1982, 54, 115–120.

    Google Scholar 

  9. Geusens, P., Dequeker, J., Verstraeten, A., et al. Age-, sex- and menopause-related changes of vertebral and peripheral bone: population study using dual and single photonabsorptiometry and radiogrammetry. J Nucl Med 1986, 27, 1540–1549.

    Google Scholar 

  10. Kalender, W.A., Felsenberg, D., Louis, O., Lopez, P., Klotz, E., Osteaux, M., Fraga, J. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 1989, 9, 75–80.

    Google Scholar 

  11. Beck, T.J., Ruff, C.B., Scott, W.W., Plato, C.C., Tobin, J.D., Quan, C.A. Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data. Calcif Tissue Int 1992, 50, 24–29.

    Google Scholar 

  12. Bohr, H.H., Schaadt, O.P. Structural changes of the femoral shaft with age measured by dual photon absorptiometry. Bone Miner 1990, 11, 357–362.

    Google Scholar 

  13. Mosekilde, L., Mosekilde, L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 1990, 11, 67–73.

    Google Scholar 

  14. Boyle, J., Brown, J., Lachance, C. Relation between bone mass and muscle weight. Lancet 1970, 1, 391–393.

    Google Scholar 

  15. Hassager, C., Pødenphant, J., Riis, B.J. et al. Changes in soft tissue body composition and plasma lipid metabolism during nandrolone decanoate therapy in postmenopausal osteoporotic women. Metabolism 1989, 38, 238–242.

    Google Scholar 

  16. Benz, D.J., Kasperk, C., Bard, D., et al. Human osteoblastic osteosarcoma cells exhibit androgen receptors and androgenic responses. Elsevier Science Publishers 1990, 388–394.

  17. Colvard, C.S., Eriksen, E.F., Keeting, P.E., et al. Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci 1989, 86, 854–857.

    Google Scholar 

  18. Eriksen, E.F., Colvard, D.S., Berg, N.J., et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988, 241, 84–86.

    Google Scholar 

  19. Kasperk, C.H., Wergedal, J.E., Farley, J.R., et al. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989, 124, 1576–1578.

    Google Scholar 

  20. Kasperk, C., Fitzsimmons, R., Strong, D., et al. Studies of the mechanism by which androgens enhance mitogenesis and differentiation in bone cells. J Clin Endocrin Metab 1990, 71, 1322–1329.

    Google Scholar 

  21. Benz, D.J., Haussler, M.R., Thomas, M.A. et al. High-affinity androgen binding and androgenic regulation of α1 (I)-procollagen and transforming growth factor-β steady state messenger ribonucleic acid levels in human osteoblast-like osteosarcoma cells. Endocrinology 1991, 128, 2723–2730.

    Google Scholar 

  22. Aerssens, J., Peeters, J., Van den Eynde, R., et al. The effect of nandrolone decanoate on IGF-I in rat bone. (Abstract). Fourth Workshop on Cells and Cytokines in Bone and Cartilage, Davos, Switzerland, January 11–14, 1992.

  23. Dequeker, J., Mohan, S., Aerssens, J., et al. Correspondence between bone IGF1 concentration and bone density in both humans and rats. (Abstract). Connective Tissue Research 1992, 27, 177.

    Google Scholar 

  24. Fukayama, S., Tashjian, A.H. Jr. Direct modulation by androgens of the response of human bone cells (SaOS-2) to human parathyroid hormone (PTH) and PTH-related protein. Endocrinology 1989, 125 (4), 1789–1794.

    Google Scholar 

  25. Turner, R.T., Wakley, G.K., Hannon, K.S. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990, 8, 612–617.

    Google Scholar 

  26. Schot, L.P.C., Zwamborn, A.W., Trouerbach, W.T.H. In: Effects of ovariectomy, 17β-oestradiol and nandrolone decanoate on trabecular and cortical bone mass in the rat femur. A quantitative microdensitometrical study. Eds.: Christiansen, C., Overgaard, K., Osteoporosis 1990. Handeltrijkkeriet Aalborg Aps., Aalborg, Denmark, 1389–1391.

    Google Scholar 

  27. Robin, J.C., Suh, O.W., Ambrus, J.L. Studies on osteoporosis. VII. Effect of 17β-hydroxy-4-estren-3-one 17 decanoate on experimental osteoporosis. A preliminary report. Steroids 1982, 40, 125–132.

    Google Scholar 

  28. Schot, L.P.C., Brunekreef, K., Spanjers, C., et al. In: Anabolic and anti-catabolic effects of nandrolone decanoate (Deca-Durbolin®) on bone or ovariectomised rats. Eds.: Christiansen, C., Overgaard, K., Osteoporosis 1990. Handeltrijkkeriet Aalborg Aps., Aalborg, Denmark, p. 2018–2022.

    Google Scholar 

  29. Aerssens, J., Van Audekercke, R., Geusens, P., et al. Mechanical properties, bone mineral content and bone composition (collagen, osteocalcin, IGF-1) of the rat femur: influence of ovariectomy and nandrolone decanoate (anabolic steroid). Calcif Tissue Int, in press.

  30. Schot, L.P.C., Dequeker, J., Geusens, P., et al. Effect of long-term nandrolone decanoate treatment on axial and peripheral bone mass and femoral strength in ovariectomised rats. (Abstract). 25th Annual Scanning Micro-scopy and Food Structure Meeting, 11–14 May 1992, Chicago, Illinois, USA.

  31. Nowakowski, H. Metabolic studies with anabolic steroids. Acta Endocrinol 1962, 39, 37–53.

    Google Scholar 

  32. Need, A.G., Morris, H.A., Hartley, T.F., et al. Effects of nandrolone decanoate on forearm mineral density and calcium metabolism in osteoporotic postmenopausal women. Calcif Tissue Int 1987, 41, 7–10.

    Google Scholar 

  33. Gennari, C., AgnusDei, D., Gonnelli, S., et al. Effects of nandrolone decanoate therapy on bone mass and calcium metabolism in women with established postmenopausal osteoporosis: a doubleblind placebo-controlled study. Maturitas 1989, 11, 187–197.

    Google Scholar 

  34. Johansen, J.S., Hassager, C., Pødenphant, J., et al. Treatment of postmenopausal osteoporosis: is the anabolic steroid nandrolone decanoate a candidate? Bone Miner 1989, 6, 77–86.

    Google Scholar 

  35. Geusens, P., Dequeker, J. Long-term effect of nandrolone decanoate, 1-α-hydroxyvitamin D3 or intermittent calcium infusion therapy on bone mineral content, bone remodeling and fracture rate in symptomatic osteoporosis: a double-blind controlled study. Bone Miner 1986, 1, 347–357.

    Google Scholar 

  36. Hassager, C., Riis, B.J., Pødenphant, J., et al. Nandrolone decanoate treatment of post-menopausal osteoporosis for 2 years and effects of withdrawal. Maturitas 1989, 11, 305–317.

    Google Scholar 

  37. Adami, S., Fossaluzza, V., Rossini, M., et al. The prevention of corticosteroid-induced osteoporosis with nandrolone decanoate. Bone Miner 1991, 15, 72–81.

    Google Scholar 

  38. Hassager, C., Jensen, L.T., Johansen, J.S., et al. The carboxy-terminal propeptide of type I procollagen in serum as a marker of bone formation: the effect of nandrolone decanoate and female sex hormones. Metab Clin Exp 1991, 40, 205–208.

    Google Scholar 

  39. Hassager, C., Jensen, L.T., Pødenphant, J., et al. Collagen synthesis in postmenopausal women during therapy with anabolic steroid or female sex hormones. Metabolism 1990, 39, 1167–1169.

    Google Scholar 

  40. Christiansen, C., Christensen, M.S., Larsen, N.E., et al. Pathophysiological mechanisms of estrogen effect on bone metabolism. Dose-response relationships in early postmenopausal women. J Clin Endocrinol Metab 1982, 55, 1124–1130.

    Google Scholar 

  41. MacIntyre, I., Stevenson, J.C., Whitehead, M.I., et al. Calcitonin for prevention of postmenopausal bone loss. Lancet 1988, 900–901.

  42. Watts, N.B., Harris, S.T., Genant, H.K., et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990, 323, 73–79.

    Google Scholar 

  43. Need, A.G., Horowitz, M., Walker, C.J., et al. Cross-over study of fat-corrected forearm mineral content during nandrolone decanoate therapy for osteoporosis. Bone 1989, 10, 3–6.

    Google Scholar 

  44. Geusens, P., Dequeker, J., Verstraeten, A., et al. Bone mineral content, cortical thickness and fracture rate in osteoporotic women after withdrawal of treatment with nandrolone decanoate, 1-α hydroxyvitamin D3, or intermittent calcium infusions. Maturitas 1986, 8, 281–289.

    Google Scholar 

  45. Need, A.G., Chatterton, B.E., Walker, C.J., et al. Comparison of calcium, calcitriol, ovarian hormones and nandrolone in the treatment of osteoporosis. Maturitas 1986, 8, 275–280.

    Google Scholar 

  46. Need, A.G., Horowitz, M., Morris, H.A., et al. Effects of nandrolone therapy on forearm bone mineral content in osteoporosis. Clin Orthop Rel Res 1987, 225, 273–278.

    Google Scholar 

  47. Gonnelli, S., AgnusDei, D., Palmieri, R., et al. Effect of nandrolone decanoate and salmon calcitonin in combination on axial and appendicular bone mass in postmenopausal osteoporosis. In: Osteoporosis 1990. Third International Symposium on Osteoporosis, Copenhagen, Denmark, 14–20 October 1990. Eds.: C., Christiansen, K., Overgaard.

  48. Birkenhäger, J.C., Erdtsieck, R.J., Zeelenberg, J., et al. Can nandrolone add to the effect of hormonal replacement therapy in postmenopausal osteoporosis? Bone Miner 1992, 18, 251–265.

    Google Scholar 

  49. Chesnut, III. C.H., Ivey, J.L., Gruber, H.E., et al. Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanisms of action. Metabolism 1983, 32, 571–580.

    Google Scholar 

  50. Kanis, J.A., Johnell, O., Gullberg, B. et al. Evidence for efficacy of drugs affecting bone metabolism in preventing hip fracture. Br Med J 1992, 305, 1124–1128.

    Google Scholar 

  51. Kanis, J.A., Beneton, M.N.C., Johnell, O., et al. Effects of anabolic steroids on cortical bone and hip fracture. (Abstract). 4th International Symposium on Osteoporosis, 27 March–2 April 1993, Hong Kong. Abstr 724.

  52. Taggart, H.M.A., Applebaum-Bowden, D., Haffner, S., et al. Reduction in high density lipoproteins by anabolic steroid (stanozolol) therapy for postmenopausal osteoporosis. Metabolism 1982, 31, 11, 1147–1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusens, P. Nandrolone decanoate: Pharmacological properties and therapeutic use in osteoporosis. Clin Rheumatol 14 (Suppl 3), 32–39 (1995). https://doi.org/10.1007/BF02210686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02210686

Key words

Navigation