Skip to main content
Log in

Effect of magnesium ions on red cell membrane properties

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Spectrin forms aggregates in solution when incubated at relatively high concentrations (several millimolar) of divalent cations. According to the evidence of electron microscopy, aggregates of globular appearance and, rather uniform size are cooperatively formed from spectrin dimers, no intermediate structures being seen. Inter-dimer chemical cross-linking of spectrin in intact red cell membranes is enhanced if magnesium ions at a concentration of 0.5mm or more are present. On the other hand, the elimination of magnesium from the interior of intact cells causes no significant change in shear elastic modulus, measured by micropipette assays, nor is there any dependence of membrane filtration rate on intracellular free magnesium concentration in the range 0–1mm. Magnesium-depleted cells are, however, converted into echinocytes within a short period, in which, control cells, exposed to ionophore and external magnesium ions, remain completely discoid. Magnesium-depleted cells also undergo structural, changes on heating below the temperature at which vesiculation sets in. These reveal themselves by the transformation of the cells to a unique characteristic shape, by grossly reduced filtrability, and by extensive agglutination of the cells when treated with a bifunctional reagent. Magnesium ions thus regulate the stability, but not to any measurable extent the gross elasticity, of the red cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backman, L. 1986. Shape control in the human red cell.J. Cell. Sci. 80:281–298

    PubMed  Google Scholar 

  • Beaven, G.H., Gratzer, W.B. 1980. Interaction of divalent cations with human red cell cytoskeletons.Biochim. Biophys. Acta 600:140–149

    PubMed  Google Scholar 

  • Bessis, M. 1973. Red cell shpaes. An illustrated classification and its rationale.In: Red Blood Cell Shape. M. Bessis, R.I. Weed, and P. F. Leblond, editors. pp. 1–24. Springer Verlag, New York

    Google Scholar 

  • Chasis, J.A., Mohandas, N. 1986. Erythrocyte membrane deformability and stability: Two distinct membrane properties that are independently regulated by skeletal protein associations.J. Cell. Biol. 103:343–350

    PubMed  Google Scholar 

  • Elgsaeter, A. 1978. Human spectrin: I. A classical light scattering study.Biochim. Biophys. Acta 536:235–244

    PubMed  Google Scholar 

  • Elgsaeter, A., Shotton, D.M., Branton, D. 1976. Intramembrane article aggregation in erythrocyte ghosts: II. The influence of spectrin aggregation.Biochim. Biophys. Acta 426:101–122

    PubMed  Google Scholar 

  • Engelhardt, H., Sackmann, E. 1988. On the measurement of shear elastic moduli and viscosities, of erythrocyte plasma membranes by transient deformation in high frequency electric fields.Biophys. J. 54:495–508

    PubMed  Google Scholar 

  • Evans, E.A. 1973. New membrane concept applied to the analysis of sheear micropipette-deformed red blood cells.Biophys. J. 13:941–954

    PubMed  Google Scholar 

  • Fischer, T.M., Haest, C.W.M., Stohs, M., Kamp, D. Deuticke, B. 1978. Selective alteration of erythrocyte deformability by SH-reagents. Evidence for the involvement of spectrin in membrane shear elasticity.Biochim. Biophys. Acta 510:270–282

    PubMed  Google Scholar 

  • Flatman, P.W., Lew, V.L. 1980. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.J. Physiol. (London) 305:13–30

    Google Scholar 

  • Fowler, V.M., Bennett, V. 1984. Erythrocyte tropomyosin. Purification and properties.J. Biol. Chem. 259:5978–5989

    PubMed  Google Scholar 

  • Gratzer, W.B. 1982. Preparation of, spectrin.Methods Enzymol.85:475–480

    PubMed  Google Scholar 

  • Kozlov, M.M., Markin, V.S. 1987. Model, of red blood cell membrane skeleton: Electrical and mechanical properties.J. Theor. Biol. 129:439–452

    PubMed  Google Scholar 

  • Laemmli, U.K., 1980. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Mikkelsen, A., Elgsaeter, A. 1978. Human spectrin: II. An electrooptic study.Biochim. Biophys. Acta 536:245–251

    PubMed  Google Scholar 

  • Mohandas N., Chasis, J.A., Shohet, S.B. 1983. The influence of membrane skeleton on red cell deformability, membrane material properties and shape.Semin. Hematol. 20:225–242

    PubMed  Google Scholar 

  • Nakashima, K., Beutler, E. 1978. Effect of anti-spectrin antibody and ATP on deformability of resealed erythrocyte membranes.Proc. Natl. Acad. Sci. USA 75:3823–3825

    PubMed  Google Scholar 

  • Reich, M.H., Kam, Z., Eisenberg, H., Worcester, D., Ungewickell, E., Gratzer, W.B. 1982. Solution scattering studies of dimeric and tetrameric spectrin.Biophys. Chem. 16:307–316

    PubMed  Google Scholar 

  • Shields, M., LaCelle, P., Waugh, R.E., Scholz, M., Peters, R., Passow, H. 1987. Effects of intracellular Ca2+ and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane.Biochim. Biophys. Acta 905:181–194

    PubMed  Google Scholar 

  • Shotton, D.M., Burke, B.E., Branton, D. 1979. The molecular structure of human erythrocyte spectrin.J. Mol. Biol. 131:303–332

    PubMed  Google Scholar 

  • Stokke, B.T., Elgsaeter, A. 1981. Human spectrin: IV. A viscosity study.Biochim. Biophys. Acta 640:640–645

    PubMed  Google Scholar 

  • Stokke, B.T., Mikkelsen, A., Elgsaeter, A. 1986a. The human erythrocyte membrane skeleton may be an ionic gel: I. Membrane mechanical properties.Eur. Biophys. J. 13:203–218

    PubMed  Google Scholar 

  • Stokke, B.T., Mikkelsen, A., Elgsaeter A. 1986b. The human erythrocyte membrane skeleton may be an ionic gel: III. Micropipette aspiration of unswollen erythrocytes.J. Theor. Biol. 123:205–211

    PubMed  Google Scholar 

  • Stokke, B.T., Steck, T.L. 1989 Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants.Biophys. J. 55:255–262

    PubMed  Google Scholar 

  • Waugh, R.E., Agre, P. 1988. Reduction of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiency in hereditary spherocytosis.J. Clin. Invest. 81:133–141

    PubMed  Google Scholar 

  • Waugh, R.E., Evans, E.A. 1979. Thermoelasticity of red blood cell membrane.Biophys J. 26:115–132

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaven, G.H., Parmar, J., Nash, G.B. et al. Effect of magnesium ions on red cell membrane properties. J. Membrain Biol. 118, 251–257 (1990). https://doi.org/10.1007/BF01868609

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868609

Key Words

Navigation