Skip to main content
Log in

Fast actions in small animals: springs and click mechanisms

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Small animals that jump or perform predatory strikes depend on much higher limb accelerations than larger animals. To overcome the temporal restrictions of muscle contraction, some arthropod muscles slowly load spring-like structures with potential energy. In flight, sound generation, jumping, or predatory strikes arthropods employ different strategies to transform muscular action to the desired movement. Click mechanisms control the frequency of oscillating spring — muscle systems while other accessory structures such as snap mechanism or latches with trigger mucles determined the stability and control the timing of the instantaneous discharge in catapult mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RMcN (1966) Rubber-like properties of the inner hinge-ligament of Pectinidae. J Exp Biol 44: 119–130

    Google Scholar 

  • Alexander RMcN (1988) Elastic mechanisms in animal movement. Cambridge Univ Press, Cambridge, pp 81–90

    Google Scholar 

  • Alexander, RMcN (1995) Leg design and jumping technique for humans, other vertebrates and insects. Phil Trans R Soc Lond B 347: 235–248

    CAS  Google Scholar 

  • Alexander RMcN, Bennet-Clark HC (1977) Storage of elastic strain energy in muscle and other tissues. Nature 265: 114–117

    Google Scholar 

  • Andersen SO, Weis-Fogh T (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv Insect Physiol 2: 1–65

    Google Scholar 

  • Bauer T, Kredler M (1988) Adhesive mouthparts in a ground beetle larva (Coleoptera, Carabida, Loricera pilicornis F.) and their function during predation. Zool Anz 221: 145–156

    Google Scholar 

  • Bauer T, Völlenkle W (1976) Hochfrequente Filmaufnahmen als Hilfsmittel bei der Analyse von Angriffs- und Fluchtverhalten in einer Räuber-Beute-Beziehung unter Bodentieren (Collembolenfang visuell jagender Carabiden). Wiss Film Wien 17: 4–11

    Google Scholar 

  • Bennet-Clark HC (1975) The energetics of the jump of the locust Schistocerca gregaria. J Exp Biol 63: 53–83

    Google Scholar 

  • Bennet-Clark HC, Lucey ECA (1967) The jump of the flea: a study of the energetics and a model of the mechanism. J Exp Biol 47: 59–76

    Google Scholar 

  • Bennet-Clark HC, Young D (1992) A model of the mechanism of sound production in cicadas. J Exp Biol 173: 123–153

    Google Scholar 

  • Blest AD, Collett TS, Pye JD (1963) The generation of ultrasonic signals by a New World arctiid moth. Proc R Soc Lond B 158: 196–207

    Google Scholar 

  • Boettiger EG (1955) Triggering the contraction process in insect fibrillar muscle. J Cell Comp Physiol 46: 370–371

    Google Scholar 

  • Boettiger EG, Furshpan E (1952) The mechanics of flight movements in Diptera. Biol Bull 102: 200–211

    Google Scholar 

  • Brodsky AK (1994) The evolution of insect flight. Oxford University Press, Oxford New York Tokyo

    Google Scholar 

  • Brown WL, Wilson EO (1959) The evolution of the dacetine ants. Q Rev Biol 34: 278–294

    Article  Google Scholar 

  • Burrows M (1969) The mechanism and neural control of the prey capture strike in the mantid shrimps Squilla and Hemisquilla. Z Vergl Physiol 62: 362–382

    Google Scholar 

  • Christian E (1979) Der Sprung der Collembolen. Zool Jb Physiol 83: 457–490

    Google Scholar 

  • Cullen MJ (1975) The jumping mechanism of Xenopsylla cheopis II. The fine structure of the jumping muscle. Phil Trans R Soc Lond B 271: 491–497

    Google Scholar 

  • Dietz BH, Brandao CRF (1993) Comportamento de caca e dieta de Acanthoynathis rudis Brown & Kempf, com comentarios sobre a evolucao da predacao em dacetini (Hymenoptera, Formicidae, Myrmicinae). Revta Bras Ent 37: 683–692

    Google Scholar 

  • Ennos AR (1987) A comparative study of the flight mechanism of Diptera. J Exp Biol 127: 355–372

    Google Scholar 

  • Evans MEG (1972) The jump of the click beetle (Coleoptera: Elateridae) — a preliminary study. J Zool Lond 167: 319–336

    Google Scholar 

  • Evans MEG (1973) The jump of the click beetle (Coleoptera: Elateridae) — energetics and mechanics. J Zool Lond 169: 181–194

    Google Scholar 

  • Fullard JH, Heller B (1990) Functional organization of the arctiid moth tymbal (Insecta, Lepidoptera). J Morphol 204: 57–65

    Google Scholar 

  • Furth DG, Traub W, Harpaz I (1983) What makes Blepharida jump? structural study of the metafemoral spring of a flea beetle. J Exp Zool 227: 43–47

    Google Scholar 

  • Gronenberg W (1995a) The fast mandible strike in the trap-jaw ant Odontomachus: temporal properties and morphological characteristics. J Comp Physiol A 176: 391–398

    Google Scholar 

  • Gronenberg W (1995b) The fast mandible strike in the trap-jaw ant Odontomachus: motor control. J Comp Physiol A 176: 399–408

    Google Scholar 

  • Gronenberg W, Ehmer B (1995) Tubular muscle fibers in ants and other insects. Zoology 99: 68–80

    Google Scholar 

  • Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262: 561–563

    Google Scholar 

  • Heitler WJ (1974) The locust jump. J Comp Physiol 89: 93–104

    Google Scholar 

  • Hoyle G (1955) Neuromuscular mechanisms of a locust skeletal muscle. Proc R Soc Lond B 143: 343–367

    Google Scholar 

  • Hoyle G (1978) Distribution of nerve and muscle fibre types in the locust jumping muscle. J Exp Biol 73: 205–233

    Google Scholar 

  • Huxley AF (1974) Review lecture: Muscular contraction. J Physiol (Lond) 243: 1–43

    Google Scholar 

  • Huxley AF, Simmons RM (1971) Mechanical properties of the cross bridges of frog striated muscle. J Physiol (Lond) 218: 59–60

    Google Scholar 

  • Huxley HE (1965) The mechanism of muscular contraction. Sci Amer 213: 18–27

    Google Scholar 

  • Jensen M, Weis-Fogh T (1962) Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Phil Trans R Soc (Lond) B 245: 137–169

    Google Scholar 

  • Josephson RK, Young D (1985) A synchronous insect muscle with an operation frequency greater than 500 Hz. J Exp Biol 118: 185–208

    Google Scholar 

  • Josephson RK, Young D (1987) Fiber ultrastructure and contraction kinetics in insect fast muscles. Am Zool 27: 991–1000

    Google Scholar 

  • Krisper G (1990) The jump of the mite-genus Zetorchestes (Acarida, Oribatida). Zool Jb Anat 120: 289–312

    Google Scholar 

  • Machin KE, Pringle JWS (1960) The physiology of insect fibrillar muscle. III The effect of sinusoidal changes of length on a beetle flight muscle. Proc R Soc (Lond) B 152: 311–330

    Google Scholar 

  • Miyan JA, Ewing AW (1985) Is the ‘click’ mechanism of dipteran flight an artefact of CCl4, anaesthesia? J Exp Biol 116: 313–322

    Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of the flight muscles of insects. J Physiol (Lond) 108: 226–232

    Google Scholar 

  • Pringle JWS (1954) A physiological analysis of cicada song. J Exp Biol 31: 525–560

    Google Scholar 

  • Pringle JWS (1957) Insect flight. Cambridge University Press, Cambridge

    Google Scholar 

  • Pringle JWS (1976) The muscle and sense organs involved in insect flight. In: Rainey RC (ed) Insect flight. Blackwell, Oxford London Edinborough Melbourne pp 3–15

    Google Scholar 

  • Rothschild M, Schlein Y (1975) The jumping mechanism of Xenopsylla cheopis I. Exoskeletal structures and musculature. Phil Trans R Soc Lond B 271: 457–490

    Google Scholar 

  • Rothschild M, Schlein Y, Parker K, Neville C, Sternberg S (1973) The flying leap of the flea. Sci Am 229: 92–99

    Google Scholar 

  • Rothschild M, Schlein Y, Parker K, Neville C, Sternberg S (1975) The jumping mechanism of Xenopsylla cheopis III. Execution of the jump and activity. Phil Trans R Soc Lond B 271: 499–515

    Google Scholar 

  • Ruegg JC (1968) Contractile mechanisms of smooth muscle. Symp Soc Exp Biol 22: 45–66

    Google Scholar 

  • Sannasi A (1969) Resilin in the cuticle of a click beetle. J Georgia Entomol Soc 4: 31–32

    Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: Adaptation and environment. 3. ed. Cambridge University Press, Cambridge London New York New Rochelle Melbourne Sydney, pp 443–445

    Google Scholar 

  • Simmons P, Young D (1978) The tymbal mechanism and song patterns of the bladder cicada Cystosoma saundersii. J Exp Biol 76: 27–45

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York London

    Google Scholar 

  • Sotavalta O (1947) The flight-tone (wing-stroke frequency) of insects. Acta entomoe fenn 4: 1–117

    Google Scholar 

  • Sotavalta O (1953) Recordings of high wing-stroke and thoracic vibration frequency in some midges. Biol Bull 104: 439–444

    Google Scholar 

  • Tanaka Y, Hisada M (1980) The hydraulic mechanism of the predatory strike in dragonfly larvae. J Exp Biol 88: 1–19

    Google Scholar 

  • Tregear RT (1975) The biophysics of fibrillar flight muscle. In: Usherwood PNR (ed) Insect muscle. Academic Press, London New York San Francisco, pp 357–403

    Google Scholar 

  • Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37: 889–907

    Google Scholar 

  • Young D, Bennet-Clark HC (1995) The role of the tymbal in cicada sound production. J Exp Biol 198: 1001–1019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronenberg, W. Fast actions in small animals: springs and click mechanisms. J Comp Physiol A 178, 727–734 (1996). https://doi.org/10.1007/BF00225821

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225821

Keywords

Navigation