Skip to main content

Cache Me If You Can: Capacitated Selfish Replication Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Abstract

Motivated by peer-to-peer (P2P) networks and content delivery applications, we study Capacitated Selfish Replication (CSR) games, which involve nodes on a network making strategic choices regarding the content to replicate in their caches. Selfish replication games were introduced in [6], who analyzed the uncapacitated case leaving the capacitated version as an open direction.

In this work, we study pure Nash equilibria of CSR games with an emphasis on hierarchical networks, which have been extensively used to model communication costs of content delivery and P2P systems. The best result from previous work on CSR games for hierarchical networks [19,23] is the existence of a Nash equilibrium for a (slight generalization of a) 1-level hierarchy when the utility function is based on the sum of the costs of accessing the replicated objects in the network. Our main result is an exact polynomial-time algorithm for finding a Nash Equilibrium in any hierarchical network using a new technique which we term “fictional players”.We show that this technique extends to a general framework of natural preference orders, orders that are entirely arbitrary except for two constraints - “Nearer is better” and “Independence of irrelevant alternatives”. This axiomatic treatment captures a vast class of utility functions and even allows for nodes to simultaneously have utility functions of completely different functional forms.

Using our axiomatic framework, we next study CSR games on arbitrary networks and delineate the boundary between intractability and effective computability in terms of the network structure, object preferences, and number of objects. In addition to hierarchical networks, we show the existence of equilibria for general undirected networks when either object preferences are binary or there are two objects. For general CSR games, however, we show that it is NP-hard to determine whether equilibria exist. We also show that the existence of equilibria in strongly connected networks with two objects and binary object preferences can be solved in polynomial time via a reduction to the well-studied evencycle problem.

Partially supported by a gift from NU alumnus Madhav Anand and NSF grants CCF-0635119 and CNS-0915985.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, E., Bampis, E., Pollatos, G.G., Zissimopoulos, V.: Optimal data placement on networks with constant number of clients. CoRR, abs/1004.4420 (2010)

    Google Scholar 

  2. Arrow, K.: Social Choice and Individual Values. Yale University Press (1951)

    Google Scholar 

  3. Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data placement problems. SIAM J. Comput. 38(4), 1411–1429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: SIGCOMM 1998, pp. 56–67 (1998)

    Google Scholar 

  5. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. Journal of the ACM (JACM) 56(3) (2009)

    Google Scholar 

  6. Chun, B.-G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubiatowicz, J.: Selfish caching in distributed systems: a game-theoretic analysis. In: PODC, pp. 21–30 (2004)

    Google Scholar 

  7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC ACM, pp. 71–78 (2006)

    Google Scholar 

  8. Devanur, N.R., Garg, N., Khandekar, R., Pandit, V., Saberi, A., Vazirani, V.V.: Price of Anarchy, Locality Gap, and a Network Service Provider Game. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1046–1055. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: PODC, pp. 347–351 (2003)

    Google Scholar 

  10. Garey, M., Johnson, D.: Computers and intractability. Freeman Press (1979)

    Google Scholar 

  11. Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in ad hoc networks. IEEE Journal on Selected Areas in Communications 24(5), 1020–1033 (2006)

    Article  Google Scholar 

  12. Gopalakrishnan, R., Kanoulas, D., Karuturi, N.N., Rangan, C.P., Rajaraman, R., Sundaram, R.: Cache me if you can: Capacitated selfish replication in networks. CoRR abs/1007.2694 (2011)

    Google Scholar 

  13. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: STOC ACM, pp. 654–663 (1997)

    Google Scholar 

  15. Korupolu, M., Plaxton, C.G., Rajaraman, R.: Placement algorithms for hierarchical cooperative caching. Journal of Algorithms 38, 260–302 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korupolu, M.R., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Trans. Knowl. Data Eng. 14(6), 1317–1329 (2002)

    Article  Google Scholar 

  17. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Laoutaris, N., Smaragdakis, G., Oikonomou, K., Stavrakakis, I., Bestavros, A.: Distributed placement of service facilities in large-scale networks. In: INFOCOM, pp. 2144–2152 (2007)

    Google Scholar 

  19. Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish replication. IEEE Trans. Parallel Distrib. Syst. 17(12), 1401–1413 (2006)

    Article  Google Scholar 

  20. Leff, A., Wolf, J.L., Yu, P.S.: Replication algorithms in a remote caching architecture. IEEE Trans. Parallel Distrib. Syst. 4(11), 1185–1204 (1993)

    Article  Google Scholar 

  21. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)

    Google Scholar 

  22. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. JCSS 48(3), 498–532 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Pollatos, G.G., Telelis, O., Zissimopoulos, V.: On the social cost of distributed selfish content replication. Networking, 195–206 (2008)

    Google Scholar 

  24. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, pfaffian orientations, and even directed circuits. Annals of Mathematics, 929–975 (1999)

    Google Scholar 

  25. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory, 2551–2567 (2006)

    Google Scholar 

  26. Tewari, R., Dahlin, M., Vin, H.M., Kay, J.S.: Design considerations for distributed caching on the internet. In: ICDCS, pp. 273–284 (1999)

    Google Scholar 

  27. Wolfson, O., Jajodia, S., Huang, Y.: An adaptive data replication algorithm. ACM Transactions on Database Systems 22, 255–314 (1997)

    Article  Google Scholar 

  28. Younger, D.H.: Graphs with interlinked directed circuits. In: Proceedings of Midwestern Symposium on Circuit Theory, vol. 2, pp. XVI2.1–XVI2.7 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalakrishnan, R., Kanoulas, D., Karuturi, N.N., Pandu Rangan, C., Rajaraman, R., Sundaram, R. (2012). Cache Me If You Can: Capacitated Selfish Replication Games. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics