Skip to main content

Continuous Search in Constraint Programming

  • Chapter
Autonomous Search

Abstract

This work presents the concept of Continuous Search (CS), whose objective is to allow any user to eventually get their constraint solver achieving a top performance on their problems. Continuous Search comes in two modes: the functioning mode solves the user’s problem instances using the current heuristics model; the exploration mode reuses these instances to train and improve the heuristics model through Machine Learning during the computer idle time. Contrasting with previous approaches, Continuous Search thus does not require that the representative instances needed to train a good heuristics model be available beforehand. It achieves lifelong learning, gradually becoming an expert on the user’s problem instance distribution. Experimental validation suggests that Continuous Search can design efficient mixed strategies after considering a moderate number of problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: J. F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi (eds.) 15th European Conference on Machine Learning, Lecture Notes in Computer Science, vol. 3201, pp. 39–50. Springer, Pisa, Italy (2004)

    Google Scholar 

  2. Al-Shahib, A., Breitling, R., Gilbert, D. R.: Predicting protein function by machine learning on amino acid sequences – a critical evaluation. BMC Genomics 78(2) (2007)

    Google Scholar 

  3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: I. P. Gent (ed.) 15th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 5732, pp. 142–157. Springer, Lisbon, Portugal (2009)

    Google Scholar 

  4. Arbelaez, A., Hamadi, Y., Sebag, M.: Online heuristic selection in constraint programming. In: International Symposium on Combinatorial Search. Lake Arrowhead, USA (2009)

    Google Scholar 

  5. Bailey, T. L., Elkan, C.: Estimating the accuracy of learned concepts. In: IJCAI, pp. 895–901 (1993)

    Google Scholar 

  6. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: Past, present and future. Constraints 12(1), 21–62 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: W. B. Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke, N. Jonoska (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, New York, USA (2002)

    Google Scholar 

  8. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint programming: A comparative survey. ACM Comput. Surv. 38(4) (2006)

    Google Scholar 

  9. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online and active learning. Journal of Machine Learning Research 6, 1579–1619 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Borrett, J. E., Tsang, E. P. K., Walsh, N. R.: Adaptive constraint satisfaction: The quickest first principle. In: W. Wahlster (ed.) 12th European Conference on Artificial Intelligence, pp. 160–164. John Wiley and Sons, Chichester, Budapest, Hungary (1996)

    Google Scholar 

  11. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: R. L. de Mántaras, L. Saitta (eds.) Proceedings of the 16th European Conference on Artificial Intelligence, pp. 146–150. IOS Press, Valencia, Spain (2004)

    Google Scholar 

  12. Carchrae, T., Beck, J. C.: Low-knowledge algorithm control. In: D. L. McGuinness, G. Ferguson (eds.) Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, pp. 49–54. AAAI Press / The MIT Press, San Jose, California, USA (2004)

    Google Scholar 

  13. Carchrae, T., Beck, J. C.: Applying machine learning to low-knowledge control of optimization algorithms. Computational Intelligence 21(4), 372–387 (2005)

    Article  MathSciNet  Google Scholar 

  14. Chang, C. C., Lin, C. J.: LIBSVM: A library for support vector machines (2001). Software from http://www.csie.ntu.edu.tw/~cjlin/libsvm

  15. Correira, M., Barahona, P.: On the efficiency of impact based heuristics. In: P. J. Stuckey (ed.) 14th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 5202, pp. 608–612. Springer, Sydney, Australia (2008)

    Chapter  Google Scholar 

  16. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)

    Google Scholar 

  17. Dasgupta, S., Hsu, D., Monteleoni, C.: A general agnostic active learning algorithm. In: J. C. Platt, D. Koller, Y. Singer, S. T. Roweis (eds.) Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems. MIT Press, Vancouver, British Columbia, Canada (2007)

    Google Scholar 

  18. Epstein, S. L., Freuder, E. C., Wallace, R., Morozov, A., Samuels, B.: The Adaptive Constraint Engine. In: P. Van Hentenryck (ed.) 8th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 2470, pp. 525–542. Springer, NY, USA (2002)

    Google Scholar 

  19. Gebruers, C., Hnich, B., Bridge, D. G., Freuder, E.C.: Using CBR to select solution strategies in constraint programming. In: H. Muñoz-Avila, F. Ricci (eds.) 6th International Conference on Case-Based Reasoning, Research and Development, Lecture Notes in Computer Science, vol. 3620, pp. 222–236. Springer, Chicago, IL, USA (2005)

    Chapter  Google Scholar 

  20. Gecode Team: Gecode: Generic constraint development environment (2006). Available from http://www.gecode.org

  21. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Z. Ghahramani (ed.) Proceedings of the Twenty-Fourth International Conference on Machine Learning, ACM International Conference Proceeding Series, vol. 227, pp. 273–280. ACM, Corvalis, Oregon, USA (2007)

    Google Scholar 

  22. Gent, I. P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case study with essence’ and minion. In: I. Miguel, W. Ruml (eds.) 7th International Symposium on Abstraction, Reformulation, and Approximation, Lecture Notes in Computer Science, vol. 4612, pp. 184–199. Springer, Whistler, Canada (2007)

    Chapter  Google Scholar 

  23. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: AAAI/IAAI, pp. 431–437 (1998)

    Google Scholar 

  24. Gomes, C. P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: O. Kullmann (ed.) 12th International Conference on Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science, vol. 5584, pp. 312–325. Springer, Swansea, UK (2009)

    Google Scholar 

  26. Haralick, R. M., Elliott, G. L.: Increasing tree search efficiency for constraint satisfaction problems. In: IJCAI, pp. 356–364. San Francisco, CA, USA (1979)

    Google Scholar 

  27. Hutter, F., Hamadi, Y., Hoos, H. H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: F. Benhamou (ed.) 12th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 4204, pp. 213–228. Springer, Nantes, France (2006)

    Chapter  Google Scholar 

  28. Hutter, F., Hoos, H. H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1152–1157. AAAI Press, Vancouver, British Columbia, Canada (2007)

    Google Scholar 

  29. Kautz, H. A., Horvitz, E., Ruan, Y., Gomes, C. P., Selman, B.: Dynamic restart policies. In: AAAI/IAAI, pp. 674–681 (2002)

    Google Scholar 

  30. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: W. W. Cohen, A. McCallum, S. T. Roweis (eds.) Proceedings of the Twenty-Fifth International Conference on Machine Learning, ACM International Conference Proceeding Series, vol. 307, pp. 536–543. ACM, Helsinki, Finland (2008)

    Google Scholar 

  31. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. In: ISTCS, pp. 128–133 (1993)

    Google Scholar 

  32. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  33. Petrovic, S., Epstein, S. L.: Random subsets support learning a mixture of heuristics. International Journal on Artificial Intelligence Tools 17(3), 501–520 (2008)

    Article  Google Scholar 

  34. Prasad, M. R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. STTT 7(2), 156–173 (2005)

    Article  Google Scholar 

  35. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In: C. Bessiere (ed.) 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 4741, pp. 574–589. Springer, Providence, RI, USA (2007)

    Google Scholar 

  36. Refalo, P.: Impact-based search strategies for constraint programming. In: M. Wallace (ed.) 10th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 2004, pp. 557–571. Springer, Toronto, Canada (2004)

    Google Scholar 

  37. Richter, M. M., Aamodt, A.: Case-based reasoning foundations. Knowledge Eng. Review 20(3), 203–207 (2005)

    Article  Google Scholar 

  38. Rish, I., Brodie, M., Ma, S., et al.: Adaptive diagnosis in distributed systems. IEEE Trans. on Neural Networks 16, 1088–1109 (2005)

    Article  Google Scholar 

  39. Roussel, O., Lecoutre, C.: XML representation of constraint networks: Format XCSP 2.1. CoRR abs/0902.2362 (2009)

    Google Scholar 

  40. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. AAAI Press, Vancouver, British Columbia (2007)

    Google Scholar 

  41. Shalabi, L. A., Shaaban, Z., Kasasbeh, B.: Data mining: A preprocessing engine. Journal of Computer Science 2, 735–739 (2006)

    Article  Google Scholar 

  42. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1) (2008)

    Google Scholar 

  43. Streeter, M., Golovin, D., Smith, S. F.: Combining multiple heuristics online. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1197–1203. AAAI Press, Vancouver, British Columbia, Canada (2007)

    Google Scholar 

  44. Vapnik, V.: The Nature of Statistical Learning. Springer Verlag, New York, NY, USA (1995)

    MATH  Google Scholar 

  45. Witten, I. H., Frank, E.: Data Mining, Practical Machine Learning Tools and Techniques. Elsevier (2005)

    MATH  Google Scholar 

  46. Wu, H., Beek, P. V.: Portfolios with deadlines for backtracking search. International Journal on Artificial Intelligence Tools 17, 835–856 (2008)

    Article  Google Scholar 

  47. Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K.: The design and analysis of an algorithm portfolio for SAT. In: C. Bessiere (ed.) 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 4741, pp. 712–727. Springer, Providence, RI, USA (2007)

    Google Scholar 

  48. Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Arbelaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arbelaez, A., Hamadi, Y., Sebag, M. (2011). Continuous Search in Constraint Programming. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds) Autonomous Search. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21434-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21434-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21433-2

  • Online ISBN: 978-3-642-21434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics