Skip to main content

Isolation and Purity Assessment of Membranes from Norway Spruce

  • Protocol
  • First Online:
Plant Membrane Proteomics

Abstract

Gaining membrane vesicles from different plant species and tissue types is crucial for membrane studies. Membrane vesicles can be used for further purification of individual membrane types, and, for example, in studies of membrane enzyme activities, transport assays, and in proteomic analysis. Membrane isolation from some species, such as conifers, has proved to be more difficult than that of angiosperm species. In this paper, we describe steps for isolating cellular membranes from developing xylem, phloem, and lignin-forming tissue-cultured cells of Norway spruce, followed by partial enrichment of plasma membranes by aqueous polymer two-phase partitioning and purity analyses. The methods used are partially similar to the ones used for mono- and dicotyledonous plants, but some steps require discreet optimization, probably due to a high content of phenolic compounds present in the tissues and cultured cells of Norway spruce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSA:

Bovine serum albumin

DTT:

Dithiothreitol

PEG:

Polyethylene glycol

PVP:

Polyvinylpyrrolidone

PVPP:

Insoluble polyvinylpolypyrrolidone

SB:

Suspension and storage buffer

UDP-Glc:

UDP-glucose

References

  1. Findlay JBC, Evans WH (1987) Biological membranes: a practical approach. IRL Press, Oxford

    Google Scholar 

  2. Johansson F, Olbe M, Sommarin M, Larsson C (1995) Brij 58, a polyoxylethylene acyl ether, creates membrane vesicles of uniform sideness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J 7:165–173

    Article  CAS  PubMed  Google Scholar 

  3. Menckhoff M, Lüthje S (2004) Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots. J Exp Bot 55:1343–1349

    Article  CAS  PubMed  Google Scholar 

  4. Lüthje S, Meisrimler CN, Hopff D, Schütze T, Köppe J, Heino K (2014) Class III peroxidases. In: Jorrin-Novo JV et al (eds) Plant proteomics: methods and protocols, methods in molecular biology, vol 1072. Springer Science & Business Media, LLC, New York, pp 687–706

    Chapter  Google Scholar 

  5. Larsson C, Widell S, Kjellbom P (1987) Preparation of high-purity plasma membranes. Methods Enzymol 148:558–568

    Article  CAS  Google Scholar 

  6. Larsson C, Sommarin M, Widell S (1994) Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol 228:451–469

    Article  CAS  Google Scholar 

  7. Toll E, Castillo FJ, Crespi P, Crèvecoeur M, Greppin H (1995) Purification of plasma membranes from leaves of conifer and deciduous tree species by phase partitioning and freeze-flow electrophoresis. Physiol Plant 95:399–408

    Article  CAS  Google Scholar 

  8. Kärkönen A, Meisrimler CN, Takahashi J, Väisänen E, Laitinen T, Jiménez Barboza LA, Holmström S, Salonvaara S, Wienkoop S, Fagerstedt KF, Lüthje S (2014) Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes. Physiol Plant 152:599–616

    Article  PubMed  Google Scholar 

  9. Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353

    Article  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  12. Sandelius AS, Morré DJ (1990) Plasma membrane isolation. In: Larsson C, Møller IM (eds) The plant plasma membrane. Springer-Verlag, Berlin, Heidelberg, pp 44–75

    Chapter  Google Scholar 

  13. Bérzci A, Asard H (2003) Soluble proteins, an often overlooked contaminant in plasma membrane preparations. Trends Plant Sci 8:250–251

    Article  Google Scholar 

  14. Bruinsma J (1963) The quantitative analysis of chlorophylls a and b in plant extracts. Photochem Photobiol 2:242–249

    Article  Google Scholar 

  15. Kauss H, Jeblick W (1986) Synergistic activation of 1,3-β-glucan synthase by Ca2+ and polyamines. Plant Sci 43:103–107

    Article  CAS  Google Scholar 

  16. Palmgren MG, Askerlund P, Fredrikson K, Widell S, Sommarin M, Larsson C (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Plant Physiol 92:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsson C (1985) Plasma membranes. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, new series, vol 1. Springer-Verlag, Berlin, pp 85–104

    Google Scholar 

  18. Briskin DP, Leonard RT, Hodges TK (1987) Isolation of the plasma membrane: membrane markers and general principles. Methods Enzymol 148:542–558

    Article  CAS  Google Scholar 

  19. Hodges TK, Leonard RT (1974) Purification of a plasma-membrane bound adenosine triphosphatase from plant roots. Methods Enzymol 32:392–406

    Article  CAS  PubMed  Google Scholar 

  20. Møller IM, Palmer JM (1982) Direct evidence for the presence of a rotenone-resistant NADH dehydrogenase on the inner surface of the inner membrane of plant mitochondria. Physiol Plant 54:267–274

    Article  Google Scholar 

  21. Sterling JD, Quigley HF, Orellana A, Mohnen D (2001) The catalytic site of the pectin biosynthetic enzyme α-1,4-galacturonosyltransferase is located in the lumen of Golgi. Plant Physiol 127:360–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Churchill KA, Sze H (1984) Anion-sensitive, H+-pumping ATPase of oat roots; direct effects of Cl, NO3 , and a disulfonic stilbene. Plant Physiol 76:490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank S. Holmström, E. Oja, and S. Salonvaara for assistance during the optimization of the protocols for Norway spruce. For funding we thank Viikki Doctoral Programme in Molecular Biosciences (E.V.), Integrative Life Science Doctoral Program (E.V.), Academy of Finland (A.K.; grant 251390), and DAAD (S.L.; grant D/07/09909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kärkönen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Väisänen, E. et al. (2018). Isolation and Purity Assessment of Membranes from Norway Spruce. In: Mock, HP., Matros, A., Witzel, K. (eds) Plant Membrane Proteomics. Methods in Molecular Biology, vol 1696. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7411-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7411-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7409-2

  • Online ISBN: 978-1-4939-7411-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics