Skip to main content

Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 843))

Abstract

The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of Developmental Origins of Health and Disease (DOHAD). Although mechanisms responsible for differential growth and development of the conceptus resulting in DOHAD phenomena remain unclear, epigenetic events involving methylation of DNA are likely mechanisms. Histotroph includes serine and methionine which can contribute to the one carbon pool, and arginine, lysine and histidine residues which may be targets of methylation. It is also clear that supplementing the diet with arginine enhances fetal-placental development in rodents, swine and humans through mechanisms that remain to be elucidated. However, molecules secreted by conceptuses such as interferon tau in ruminants, estrogens and interferons in pigs and chorionic gonadotrophin, along with progesterone, regulate expression of genes for nutrient transporters. Understanding mechanisms whereby select nutrients regulate expression of genes in cell signaling pathways critical to conceptus development, implantation and placentation is required for improving successful establishment and maintenance of pregnancy in mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albertini DF, Overstrom EW, Ebert KM. Changes in the organization of the actin cytoskeleton during preimplantation development of the pig embryo. Biol Reprod. 1987;37:44–451.

    Google Scholar 

  • Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol. 2013;4:170–79.

    Google Scholar 

  • Bazer FW, First NL. Pregnancy and parturition. J Anim Sci. 1983;57 [Suppl 2]:425–60.

    CAS  PubMed  Google Scholar 

  • Bazer FW, Thatcher WW. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2a by the uterine endometrium. Prostaglandins. 1977;14:397–401.

    CAS  PubMed  Google Scholar 

  • Bazer FW, Robinson OW, Clawson AJ, Ulberg LC. Uterine capacity at two stages of gestation in gilts following embryo superinduction. J Anim Sci. 1969a;29:30–4.

    CAS  PubMed  Google Scholar 

  • Bazer FW, Clawson AJ, Robinson OW, Ulberg LC. Uterine capacity in gilts. J Reprod Fert. 1969b;18:121–4.

    CAS  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction. 2009a;138:195–209.

    CAS  PubMed  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol. 2009b;8:179–211.

    Google Scholar 

  • Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010;16:135–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bazer FW, Kim J, Song G, Satterfield MC, Johnson GA, Burgardt RC, Wu G. Uterine environment and conceptus development in ruminants. Anim Reprod. 2012a;9:97–304.

    Google Scholar 

  • Bazer FW, Satterfield MC, Song G. Modulation of uterine function by endocrine and paracrine factors in ruminants. Anim Reprod. 2012b;9:305–11.

    Google Scholar 

  • Bazer FW, Kim JY, Song GW, Ka H, Wu G, Johnson GA, Vallet JL. Roles of selected nutrients on development of the conceptus during pregnancy. Soc Reprod Fertil. 2013;Suppl 68:159–74.

    Google Scholar 

  • Bérard J, Bee G. Effects of dietary l-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal. 2010;4:1680–87.

    PubMed  Google Scholar 

  • Bindon BM. Systematic study of preimplantation stages of pregnancy in the sheep. Australian J Biol Sci. 1971;24:131–5.

    CAS  Google Scholar 

  • Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC, 3rd. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol. 2008;295:C836–43.

    Google Scholar 

  • Burghardt RC, Burghardt JR, Taylor JD, Reeder AT, Nguen BT, Spencer TE, Bayless KJ, Johnson GA. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal-conceptus interface and uterine wall during ovine pregnancy. Reproduction. 2009;137:567–82.

    CAS  PubMed  Google Scholar 

  • Campbell R. Pork CRC—NZ seminar series: arginine and reproduction. 2012. http://www/nzpib.co.nz.

  • Cartwright JE, Tse WK, Whitley GS. Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase. Exp Cell Res. 2002;279:219–26.

    CAS  PubMed  Google Scholar 

  • Chang MC. Development of bovine blastocyst with a note on implantation. Anat Rec. 1952;113:143–61.

    CAS  PubMed  Google Scholar 

  • Chang MC, Rowson LEA. Fertilization and early development of dorset horn sheep in the spring and summer. Anat Rec. 1965;152:303–16.

    CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y, Wang JJ, Satterfield MC, Meininger CJ, Bazer FW, Wu G. Nitric oxide and energy metabolism in mammals. Biofactors. 2013;39:383–91.

    CAS  PubMed  Google Scholar 

  • De Blasio M Roberts C Owens J. Effect of dietary arginine supplementation during gestation on litter size of gilts and sows. 2009. http://www.australianpork.com.au.

  • Dennis PB, Pullen N, Kozma SC, Thomas G. The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol. 1996;16:6242–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desforges M, Sibley CP. Placental nutrient supply and fetal growth. Int J Dev Biol. 2010;54:377–90.

    CAS  PubMed  Google Scholar 

  • Dilworth MR, Sibley CP. Review: transport across the placenta of mice and women. Placenta. 2013;34 Suppl:S34–9.

    Google Scholar 

  • Duggavathi R, Murphy BD. Ovulation signals. Science. 2009;324:890–1.

    CAS  PubMed  Google Scholar 

  • Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K. Liver receptor homolog 1 is essential for ovulation. Genes Dev. 2008;22:1871–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fenton FR, Bazer FW, Robinson OW, Ulberg LC. Effect of quantity of uterus on uterine capacity in gilts. J Anim Sci. 1970;31:104–6.

    CAS  PubMed  Google Scholar 

  • Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis S. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. J Mol Cell Biol. 2004;24:200–16.

    CAS  Google Scholar 

  • Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66.

    CAS  PubMed  Google Scholar 

  • Fuchs BC, Finger RE, Onan MC, Bode BP. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am J Physiol Cell Physiol. 2007;293:C55–63.

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal fluid of cyclic and pregnant ewes. Biol Reprod. 2009a;80:86–93.

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients In the ovine uterine lumen: II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol Reprod. 2009b;80:94–104.

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen: III Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod. 2009c;80:602–9.

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen: IV. Expression of neutral and acidic amino acid transporters in ovine uteri and periimplantation conceptuses. Biol Reprod. 2009d;80:1196–208.

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen: VI. Expression of FK506-binding protein 12-rapamycin complex-associated protein 1 (FRAP1) and regulators and effectors of mTORC1 and mTORC2 complexes in ovine uteri and conceptuses Biol Reprod. 2009f;81:87–100.

    CAS  PubMed  Google Scholar 

  • Gao KG, Jiang ZY, Lin YC, Zheng C, Zhou G, Chen F, Yang L, Wu G. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids. 2012;42:2207–14.

    CAS  PubMed  Google Scholar 

  • Gardner DK, Lane M, Batt P. Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev. 1993;36:313–9.

    CAS  PubMed  Google Scholar 

  • Geisert RD, Renegar RH, Thatcher WW, Roberts RM, Bazer FW. Establishment of pregnancy in the pig. I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol Reprod. 1982a;27:925–39.

    CAS  PubMed  Google Scholar 

  • Geisert RD, Brookbank JW, Roberts RM, Bazer FW. Establishment of pregnancy in the pig. II. Cellular remodelling of the porcine blastocysts during elongation of day 12 of pregnancy. Biol Reprod. 1982b;27:941–55.

    CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15:2852–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gootwine E, Spencer TE, Bazer FW. Litter-size-dependent intrauterine growth restriction in sheep. Animal. 2007;1:547–64.

    CAS  PubMed  Google Scholar 

  • Gootwine E, Reicher S, Rozov A. Prolificacy and lamb survival at birth in Awassi and Assaf sheep carrying the FecB (Booroola) mutation. Anim Reprod Sci. 2008;108:402–11.

    PubMed  Google Scholar 

  • Gootwine E. Meta-analysis of morphometric parameters of late-gestation fetal sheep developed under natural and artificial constraints. J Anim Sci. 2013;91:111–9.

    CAS  PubMed  Google Scholar 

  • Gresores A, Anderson S, Hood D, Zerbe GO, Hay WW Jr. Separate and joint effects of arginine and glucose on ovine fetal insulin secretion. Am J Physiol. 1997;72:E68–73.

    Google Scholar 

  • Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids. 2008;34:517–23.

    CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signaling. 2009;2:1–6.

    Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11:859–71.

    CAS  PubMed  Google Scholar 

  • Gui S, Jia J, Niu X, Bai Y, Zou H, Deng J, Zhou R. Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J Renin Angiotensin Aldosterone Syst. 2014;15:88–96.

    Google Scholar 

  • Guillomot M, Flechon JE, Leroy F. 1993. Blastocyst development and implantation. In: Thibault C, Levasseur MC, Hunter RHF (editor) Reproduction in mammals and man. Paris: Ellipses, pp 387–411.

    Google Scholar 

  • Guo H, Marroquin CE, Qai PY, Kuo PC. Nitric oxide-dependent osteopontin expression induces metastatic behavior in HepG2 cells. Dig Dis Sci. 2005;50:1288–98.

    CAS  PubMed  Google Scholar 

  • Gwatkin RB. Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J Cell Physiol. 1966 68:335–44.

    Google Scholar 

  • Gwatkin RB. Nutritional requirements for post-blastocyst development in the mouse. Amino acids and protein in the uterus during implantation. Int J Fertil. 1969;14:101–5.

    CAS  PubMed  Google Scholar 

  • Hobbs JG, Kaye PL. Glycine and Na + transport in preimplantation mouse embryos. J Reprod Fertil. 1986;77:61–6.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.

    CAS  PubMed  Google Scholar 

  • Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A. 1994;91:4441–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu FW, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006;17:571–88.

    CAS  PubMed  Google Scholar 

  • Jansson T, Aye IL, Goberdhan DC. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta. 2012;33 Suppl 2:e23–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson GA, Burghardt RC, Bazer FW, Spencer TE. Osteopontin: roles in implantation and placentation. Biol Reprod. 2003;69:1458–71.

    CAS  PubMed  Google Scholar 

  • Johnson GA, Bazer FW, Burghardt RC, Spencer TE, Wu G, Bayless KJ. Conceptus-uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptus. Soc Reprod Fertil Suppl. 2009;66:321–32.

    CAS  PubMed  Google Scholar 

  • Kaliman P, Canicio J, Testar X, Palacin M, Zorzano A. Insuline-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-B and inducible nitric-oxide synthase define a common myogenic signaling pathway. J Biol Chem. 1999 274:17437–44.

    CAS  PubMed  Google Scholar 

  • Kim J, Song G, Gao H, Farmer JL, Satterfield MC, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Bazer. Insulin-like growth factor 2 (IGF2) activates PI3K-AKT1 and MAPK cell signaling pathways and stimulates proliferation and migration of ovine trophectoderm cells. Endocrinology. 2008;149:3085–94.

    CAS  PubMed  Google Scholar 

  • Kim J, Erikson DW, Burghardt RC, Spencer TE, Wu G, Bayless KJ, Johnson GA, Bazer FW. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biol. 2010;29:369–82.

    CAS  PubMed  Google Scholar 

  • Kim J, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients in the ovine uterine lumen: VII. Effects of arginine, leucine, glutamine and glucose on trophectodem cell signaling, proliferation and migration. Biol Reprod. 2011a;84:70–8.

    CAS  PubMed  Google Scholar 

  • Kim J, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients in the ovine uterine lumen: VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR RPS6 K RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod. 2011b;84:62–9.

    CAS  PubMed  Google Scholar 

  • Kim J, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol Reprod. 2011c;84:1139–47.

    CAS  PubMed  Google Scholar 

  • Kim JY, Song GW, Wu G, Bazer FW. Functional roles of fructose. Proc Natl Acad Sci U S A. 2012;109:E1619–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY, Song GH, Wu G, Gao HJ, Johnson GA, Bazer FW. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod. 2013;88:113–20.

    PubMed  Google Scholar 

  • Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999;274:11647–52.

    CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science. 1994;265:803–6.

    CAS  PubMed  Google Scholar 

  • Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, Bazer FW, Wu G. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem. 2012;23:1178–83.

    CAS  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G. Developmental changes of amino acids in ovine fetal fluids. Biol Reprod. 2003;68:1813–20.

    CAS  PubMed  Google Scholar 

  • Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE. Developmental changes in nitric oxide synthesis in the ovine placenta Biol Reprod. 2004a;70:679–86.

    CAS  PubMed  Google Scholar 

  • Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MW, Hess BW, Wu G. Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod. 2004b;71:901–8.

    CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G. Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J Nutr. 2010;140:1242–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G. Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple fetuses. J Nutr. 2011;141:849–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Bazer FW, Gao H, Jobgen W, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G. Amino acids and gaseous signaling. Amino Acids. 2009;37:65–78.

    PubMed  Google Scholar 

  • Li X, Bazer FW, Johnson GA, Burghardt RC, Erikson DW, Frank JW, Spencer TE, Shinzato I, Wu G. Dietary supplementation with 0.8 % L-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr. 2010;140:1111–6.

    CAS  PubMed  Google Scholar 

  • Li X, Rezaei R, Li P, Wu G. Composition of amino acids in feed ingredients for animal diets. Amino Acids. 2011;40:1159–68.

    CAS  PubMed  Google Scholar 

  • Liao XH, Majithia A, Huang X, Kimmel AR. Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids. 2008;35:761–70.

    CAS  PubMed  Google Scholar 

  • Liu XM, Reyna SV, Ensenat D, Peyton KJ, Wang H, Schafer AI, Durante W. Platelet-derived growth factor stimulates LAT1 gene expression in vascular smooth muscle: role in cell growth. Fed Am Soc Exp Biol J. 2004;18:768–70.

    CAS  Google Scholar 

  • Luther JS, Windorski EJ, Schauer CS. Impacts of L-arginine on ovarian function and reproductive performance in ewes. J Anim Sci. 2008;86 (E-Suppl. 2):ii.

    Google Scholar 

  • Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240;182–93.

    CAS  PubMed  Google Scholar 

  • Martin PM, Sutherland AE, Winkle LJV. Amino acid transport regulates blastocyst implantation. Biol Reprod 2003;69:1101–08.

    CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr. 2007;137:652–6.

    CAS  PubMed  Google Scholar 

  • Mattson BA, Overstrom EW, Albertini DF. Transitions in trophectoderm cellular shape and cytoskeletal organization in the elongating pig blastocyst. Biol Reprod. 1990;42:195–205.

    CAS  PubMed  Google Scholar 

  • Mehrotra PK, Kitchlu S, Farheen S. Effect of inhibitors of enzymes involved in polyamine biosynthesis pathway on pregnancy in mouse and hamster. Contraception. 1998;57:55–60.

    CAS  PubMed  Google Scholar 

  • Morris DG, Diskin MG, Sreenan JM. Protein synthesis and phosphorylation by elongating 13–15-day-old cattle blastocysts. Reprod Fertil Dev. 2000;12:39–44.

    CAS  PubMed  Google Scholar 

  • Morris DG, Humpherson PG, Leese HJ, Sreenan JM. Amino acid turnover by elongating cattle blastocysts recovered on days 14–16 after insemination. Reproduction. 2002;124:667–573.

    CAS  PubMed  Google Scholar 

  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24:6710–718.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nancarrow CD. Embryonic mortality in the ewe and doe. In: Zavy MT, Geisert RD (editor) Embryonic mortality in domestic species. CRC Press, Boca Raton, Florida; 1994. pp. 79–97.

    Google Scholar 

  • Nielsen FC, Ostergaard L, Nielsen J, Christiansen J. Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature. 1995;377:358–62.

    CAS  PubMed  Google Scholar 

  • Ohlsson R, Larsson E, Nilsson O, Wahlstrom T, Sundstrom P. Blastocyst implantation precedes induction of insulin-like growth factor II gene expression in human trophoblasts. Development. 1989;106:555–9.

    CAS  PubMed  Google Scholar 

  • Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, Cleveland JL. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol. 2001;21:6549–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pond WG, Strachan DN, Sinha YN, Walker EF Jr, Dunn JA, Barnes RH. Effect of protein deprivation of swine during all or part of gestation on birth weight, postnatal growth rate and nucleic acid content of brain and muscle of progeny. J Nutr. 1969;99:61–7.

    CAS  PubMed  Google Scholar 

  • Pond WG, Wu JF. Mature body weight and life span of male and female progeny of primiparous rats fed a low protein or adequate diet throughout pregnancy. J Nutr. 1981;111:1949–54.

    CAS  PubMed  Google Scholar 

  • Ramaekers P, Kemp B, van der Lende T. Progenos in sows increases number of piglets born. J Anim Sci. 2006;84 (Suppl. 1):394 (Abstract).

    Google Scholar 

  • Regnault TR, de Vrijer B, Battaglia FC. Transport and metabolism of amino acids in placenta. Endocrine. 2002;19:23–41.

    CAS  PubMed  Google Scholar 

  • Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Wallace JM, Caton JS, Redmer DA. Animal models of placental angiogenesis. Placenta. 2005;26:689–708.

    CAS  PubMed  Google Scholar 

  • Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in-vitro. Reprod Fertil Dev. 1992;4:547–57.

    CAS  PubMed  Google Scholar 

  • Roberto da Costa RP, Costa AS, Korzekwa AJ et al. Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod Fertil Dev. 2008;20:674–83.

    CAS  PubMed  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993;90:7240–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17:596–603.

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Gao H, Li X, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol Reprod. 2010a;82:224–31.

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Bazer FW, Spencer TE, Wu G. Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr. 2010b;140:251–8.

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G. Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids. 2012;43:1593–603.

    Google Scholar 

  • Saxena D, Purohit SB, Kumar P, Laloraya M. Increased appearance of inducible nitric oxide synthase in the uterus and embryo at implantation. Biol Chem. 2000;4:384–91.

    CAS  Google Scholar 

  • Schmelzle T, Hall MN. mTOR, a central controller of cell growth. Cell. 2000;103:253–62.

    CAS  PubMed  Google Scholar 

  • Schmid H, Bertoluci M, Coimbra TM. Glucose transporter 12 and mammalian target of rapamycin complex 1 signaling: a new target for diabetes-induced renal injury? Endocrinology. 2008;149:913–6.

    CAS  PubMed  Google Scholar 

  • Shen SF, Hua CH. Effect of L-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. J Matern Fetal Neonatal Med. 2011;24:822–6.

    CAS  PubMed  Google Scholar 

  • Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell. 2006;11:583–9.

    CAS  PubMed  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction. 2004a;128:657–68.

    CAS  PubMed  Google Scholar 

  • Spencer TE, Johnson GA, Burghardt RC, Bazer FW. Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol Reprod. 2004b;71:2–10.

    CAS  PubMed  Google Scholar 

  • Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61:731–40.

    CAS  PubMed  Google Scholar 

  • Steven, DH. Comparative Placentation. Essays in Structure and Function. London: Academic Press; 1975.

    Google Scholar 

  • Tan B, Yu YW, Monn MF, Hughes HV, OʼDell DK, Walker JM. Targeted lipidomics approach for endogenous N-acyl amino acids in rat brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:2890–94.

    CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13:1259–68.

    CAS  PubMed  Google Scholar 

  • Thureen PJ, Baron KA, Fennessey PV, Hay WW Jr. Ovine placental and fetal arginine metabolism at normal and increased maternal plasma arginine concentrations. Pediatr Res. 2002;51:464–71.

    CAS  PubMed  Google Scholar 

  • Van Winkle LJ Campione AL. Development of amino acid transport system B0, + in mouse blastocysts. Biochim Biophys Acta. 1987;925:164–74.

    PubMed  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–42.

    CAS  PubMed  Google Scholar 

  • Vonnahme KA, Wilson ME, Ford SP. Conceptus competition for uterine space: different strategies exhibited by the Meishan and Yorkshire pig. J Anim Sci. 2002;80:1311–6.

    CAS  PubMed  Google Scholar 

  • Wales RG, Du ZF. The metabolism of glutamine by the preimplantation sheep conceptus and its interaction with glucose. Reprod Fertil Dev. 1994;6:659–67.

    CAS  PubMed  Google Scholar 

  • Wathes DC, Reynolds TS, Robinson RS, Stevenson KR. Role of the insulin-like growth factor system in uterine function and placental development in ruminants. J Dairy Sci. 1998;81:1778–89.

    CAS  PubMed  Google Scholar 

  • Webel SK, Dziuk PJ. Effect of stage of gestation and uterine space on prenatal survival in the pig. J Anim Sci. 1974;38:960–3.

    CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ. Nitric oxide and vascular insulin resistance. Biofactors. 2009;35:21–7.

    PubMed  Google Scholar 

  • Wu G. Functional amino acids in growth, reproduction and health. Adv Nutr. 2010;1:31–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G. Recent advances in swine amino acid nutrition. J Anim Sci Biotech. 2010;1:49–61.

    Google Scholar 

  • Wu G. Functional amino acids in growth, reproduction and health. Adv Nutr. 2010;1:31–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Tuo W. Developmental changes of free amino acid concentrations in fetal fluids of pigs. J Nutr. 1995;125:2859–68.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP. Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod. 1996a;54:1261–65.

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW. Arginine nutrition in neonatal pigs. J Nutr. 2004a;134:2783S–90S.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr. 2004b;134:2169–72.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE. Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod. 2005;72:842–50.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE. Intrauterine growth retardation: implications for the animal sciences. J Anim Sci. 2006;84:2316–37.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, Li P, Matis JH, Meininger CJ, Spencer TE. Pharmacokinetics and safety of arginine supplementation in animals. J Nutr. 2007a;137:1673S–80S.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL. Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci. 2007b;112:8–22.

    Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids. 2008;35:691–702.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37:153–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci. 2010;88:E195–204.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ. Important roles for L-glutamine in swine nutrition and production. J Anim Sci. 2011a;89:2017–30.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li X, McKnight JR, Satterfield MC, Spencer TE. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. 2011b;40:1053–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinatal Epidemiol. 2012; 26 (Suppl 1):4–26.

    Google Scholar 

  • Wu G, Wu Z, Dai Z, Yang Y, Wang W, Liu C, Wang B, Wang J, Yin Y. Dietary requirements of "nutritionally nonessential amino acids" by animals and humans. Amino Acids. 2013a;44:1107–13.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Burghardt RD, Li XL, Dai ZL, Wang JJ, Wu ZL. Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl. 2013b;68:185–98.

    Google Scholar 

  • Wu G, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin Y. Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids. 2013c;44:1107–13.

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li XL, Wang XQ, Johnson GA, Burghardt RC, Dai ZL, Wang JJ, Wu ZL. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013d;45:241–56.

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471–84.

    CAS  PubMed  Google Scholar 

  • Wynn M, Wynn A. Nutrition around conception and the prevention of low birthweight. Nutr Health. 1988;6:37–52.

    CAS  PubMed  Google Scholar 

  • Xiao XM, Li LP. L-arginine treatment for asymmetric fetal growth restriction. Int J Gynecol Obstet. 2005;88:15–8.

    CAS  Google Scholar 

  • Zeng X, Wang F, Fan X, Yang W, Zhou B, Li P, Yin Y, Wu G, Wang J. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr. 2008;138:1421–25.

    CAS  PubMed  Google Scholar 

  • Zeng X, Huang Z, Mao X, Wang J, Wu G, Qiao S. Arginine enhances embryo implantation in rats through PI3K/Akt/mTOR/NO signaling pathway during early pregnancy. PLoS One. 2012;7:e41192.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng X, Mao X, Huang Z, Wang F, Wu G, Qiao S. Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction. 2013;145:1–7.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5:578–81.

    CAS  PubMed  Google Scholar 

  • Zhou J, Bondy C. Insulin-like growth factor-II and its binding proteins in placental development. Endocrinology. 1992;131:1230–40.

    CAS  PubMed  Google Scholar 

  • Zhou QL, Jiang ZY, Holik J, Chawla A, Hagan GN, Leszyk J, Czech MP. Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochem J. 2008;411:647–55.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research presented in this paper was supported by USDA CSREES National Research Initiative Grant 2006-35203-17283 and Agriculture and Food Research Initiative Competitive Grant no. 2011-67015-20028 from the USDA National Institute of Food and Agriculture, National Research Initiative Competitive Grant No. 2006-35203-17283 from the USDA National Institute of Food and Agriculture, and the World Class University (WCU) program (R31-10056) through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bazer, F., Johnson, G., Wu, G. (2015). Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. In: Leese, H., Brison, D. (eds) Cell Signaling During Mammalian Early Embryo Development. Advances in Experimental Medicine and Biology, vol 843. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2480-6_2

Download citation

Publish with us

Policies and ethics