Skip to main content
Log in

Necessary and sufficient conditions for evolutionary suicide

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Evolutionary suicide is an evolutionary process where a viable population adapts in such a way that it can no longer persist. It has already been found that a discontinuous transition to extinction is a necessary condition for suicide. Here we present necessary and sufficient conditions, concerning the bifurcation point, for suicide to occur. Evolutionary suicide has been found in structured metapopulation models. Here we show that suicide can occur also in unstructured population models. Moreover, a structured model does not guarantee the possibility of suicide: we show that suicide cannot occur in age-structured population models of the Gurtin-MacCamy type. The point is that the mutant’s fitness must explicitly depend not only on the environmental interaction variable, but also on the resident strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, W. C., A. Emerson, T. Park and K. Schmidt (1949). Principles of Animal Ecology, Philadelphia: Saunders.

    Google Scholar 

  • Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, Albemarle Street, London: John Murray.

    Google Scholar 

  • Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex, Albemarle Street, London: John Murray.

    Google Scholar 

  • Diekmann, O., M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme (2001). On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math Biol. (to appear).

  • Diekmann, O., M. Gyllenberg, J. A. J. Metz and H. R. Thieme (1998). On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol. 36, 349–388.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., J. A. P. Heesterbeek and J. A. J. Metz (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious-diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., S. D. Mylius and J. R. ten Donkelaar (1999). Saumon à la Kaitala et Getz, sauce hollandaise. Evol. Ecol. Res. 1, 261–275.

    Google Scholar 

  • Ferrière, R. (2000). Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue, in Options, Laxenburg, Austria: IIASA, pp. 12–16.

    Google Scholar 

  • Geritz, S. A. H., M. Gyllenberg, F. J. A. Jacobs and K. Parvinen (2001). Invasion Dynamics and Attractor Inheritance (submitted).

  • Geritz, S. A. H., È. Kisdi, G. Meszéna and J. A. J. Metz (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57.

    Article  Google Scholar 

  • Gurtin, M. E. and R. C. MacCamy (1974). Non-linear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281–300.

    Article  MathSciNet  Google Scholar 

  • Gyllenberg, M. and I. A. Hanski (1992). Single-species metapopulation dynamics: a structured model. Theor. Popul. Biol. 42, 35–62.

    Article  MathSciNet  Google Scholar 

  • Gyllenberg, M. and J. A. J. Metz (2001). On fitness in structured metapopulations. J. Math. Biol. (in press).

  • Gyllenberg, M., K. Parvinen and U. Dieckmann (2000). Evolutionary suicide and evolution of dispersal in structured metapopulations, Interim Report IR-00-056, Laxenburg, Austria: IIASA, http://www.iiasa.ac.at/cgi-bin/pubsrch?IR00056.

    Google Scholar 

  • Haldane, J. B. S. (1932). The Causes of Evolution, London: Longmans, Green & Co. Limited.

    Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science 162, 1243–1248.

    Google Scholar 

  • Heesterbeek, J. A. P. (1992). R 0, PhD thesis, University of Leiden, The Netherlands.

  • Kisdi, È. (1999). Evolutionary branching under asymmetric competition. J. Theor. Biol. 197, 149–162.

    Article  Google Scholar 

  • Matsuda, H. and P. A. Abrams (1994a). Runaway evolution to self-extinction under asymmetrical competition. Evolution 48, 1764–1772.

    Article  Google Scholar 

  • Matsuda, H. and P. A. Abrams (1994b). Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theor. Popul. Biol. 45, 76–91.

    Article  Google Scholar 

  • Metz, J. A. J., S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden (1996). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction, in Stochastic and Spatial Structures of Dynamical Systems, S. J. van Strien and S. M. Verduyn Lunel (Eds), Amsterdam: North-Holland, pp. 183–231.

    Google Scholar 

  • Metz, J. A. J. and M. Gyllenberg (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R Soc. B 268, 499–508.

    Article  Google Scholar 

  • Mylius, S., M. Doebeli and O. Diekmann (2001). Can initial invasion dynamics correctly predict phenotypic substitutions? in Elements of Adaptive Dynamics, U. Dieckmann and J. A. J. Metz (Eds), Cambridge University Press (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Parvinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, M., Parvinen, K. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63, 981–993 (2001). https://doi.org/10.1006/bulm.2001.0253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0253

Keywords

Navigation