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Abstract

Let G be a nontrivial connected, edge-colored graph. An edge-cut R of G
is called a rainbow cut if no two edges in R are colored the same. An edge-
coloring of G is a rainbow disconnection coloring if for every two distinct
vertices u and v of G, there exists a rainbow cut in G, where u and v belong
to different components of G − R. We introduce and study the rainbow
disconnection number rd(G) of G, which is defined as the minimum number
of colors required of a rainbow disconnection coloring of G. It is shown that
the rainbow disconnection number of a nontrivial connected graph G equals
the maximum rainbow disconnection number among the blocks of G. It is
also shown that for a nontrivial connected graph G of order n, rd(G) = n−1
if and only if G contains at least two vertices of degree n− 1. The rainbow
disconnection numbers of all grids Pm � Pn are determined. Furthermore,
it is shown for integers k and n with 1 ≤ k ≤ n − 1 that the minimum
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size of a connected graph of order n having rainbow disconnection number k
is n+ k − 2. Other results and a conjecture are also presented.
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1. Introduction

An edge-coloring of a graph G is a function c : E(G) → [k] = {1, 2, . . . , k} for
some positive integer k where adjacent edges may be assigned the same color. A
graph with an edge-coloring is an edge-colored graph. If no two adjacent edges of
G are colored the same, then c is a proper edge-coloring. The minimum number
of colors required of a proper edge-coloring of G is the chromatic index of G,
denoted by χ′(G). The minimum and maximum degrees of G are denoted by
δ(G) and ∆(G), respectively. By a famous 1964 theorem of Vizing [7],

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

for every nonempty graph G.
A set R of edges in a connected edge-colored graph G is a rainbow set if no

two edges in R are colored the same. A path P in G is a rainbow path if no two
edges in P are colored the same. The graph G is rainbow-connected if every two
vertices of G are connected by a rainbow path. An edge-coloring of G with this
property is called a rainbow coloring. The minimum number of colors needed in a
rainbow coloring of G is the rainbow connection number of G, denoted by rc(G).
Rainbow connection was introduced [1] in 2006. For more details on rainbow
connection, see the book [6] and the survey paper[5].

The object of this paper is to introduce a concept that is somewhat reverse
to rainbow connection and to present some results dealing with this new concept.

2. An Introduction to Rainbow Disconnection

An edge-cut of a nontrivial connected graph G is a set R of edges of G such that
G−R is disconnected. The minimum number of edges in an edge-cut of G is its
edge-connectivity λ(G). We then have the well-known inequality λ(G) ≤ δ(G).
For two distinct vertices u and v of G, let λ(u, v) denote the minimum number
of edges in an edge-cut R of G such that u and v lie in different components of
G − R. The following result of Elias, Feinstein and Shannon [2] and Ford and
Fulkerson [3] presents an alternate interpretation of λ(u, v).

Theorem 2.1. For every two vertices u and v in a graph G, λ(u, v) is the

maximum number of pairwise edge-disjoint u− v paths in G.



The upper edge-connectivity λ+(G) is defined by

λ+(G) = max{λ(u, v) : u, v ∈ V (G)}.

Consider, for example, the graph Kn + v obtained from the complete graph
Kn, one vertex of which is attached to a single leaf v. For this graph, λ(Kn +
v) = 1 while λ+(Kn + v) = n − 1. Thus, λ(G) denotes the global minimum
edge-connectivity of a graph, while λ+(G) denotes the local maximum edge-
connectivity of a graph.

A set R of edges in a nontrivial connected, edge-colored graph G is a rainbow

cut of G if R is both a rainbow set and an edge-cut. A rainbow cut R is said
to separate two vertices u and v of G if u and v belong to different components
of G − R. Any such rainbow cut in G is called a u − v rainbow cut in G. An
edge-coloring of G is a rainbow disconnection coloring if for every two distinct
vertices u and v of G, there exists a u − v rainbow cut in G. The rainbow

disconnection number rd(G) of G is the minimum number of colors required of
a rainbow disconnection coloring of G. A rainbow disconnection coloring with
rd(G) colors is called an rd-coloring of G. We now present bounds for the rainbow
disconnection number of a graph.

Proposition 2.2. If G is a nontrivial connected graph, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof. First, by Vizing’s theorem, χ′(G) ≤ ∆(G) + 1. Now, let there be given a
proper edge-coloring of G using χ′(G) colors. Then, for each vertex x of G, the set
Ex of edges incident with x is a rainbow set and |Ex| = deg x ≤ ∆(G) ≤ χ′(G).
Furthermore, Ex is a rainbow cut in G and so rd(G) ≤ χ′(G).

Next, let there be given an rd-coloring of G. Let u and v be two vertices of
G such that λ+(G) = λ(u, v) and let R be a u−v rainbow cut with |R| = λ(u, v).
Then |R| ≤ rd(G). Thus, λ(G) ≤ λ+(G) = |R| ≤ rd(G).

We now present examples of two classes of connected graphs G for which
λ(G) = rd(G), namely cycles and wheels.

Proposition 2.3. If Cn is a cycle of order n ≥ 3, then rd(Cn) = 2.

Proof. Since λ(Cn) = 2, it follows by Proposition 2.2 that rd(Cn) ≥ 2. To show
that rd(Cn) ≤ 2, let c be an edge-coloring of Cn that assigns the color 1 to exactly
n − 1 edges of Cn and the color 2 to the remaining edge e of Cn. Let u and v

be two vertices of Cn. There are two u− v paths P and Q in Cn, exactly one of
which contains the edge e, say e ∈ E(P ). Then any set {e, f}, where f ∈ E(Q),
is a u − v rainbow cut. Thus, c is a rainbow disconnection coloring of Cn using
two colors. Hence, rd(Cn) = 2.



Proposition 2.4. If Wn = Cn ∨ K1 is the wheel of order n + 1 ≥ 4, then

rd(Wn) = 3.

Proof. Since λ(Wn) = 3, it follows by Proposition 2.2 that rd(Wn) ≥ 3. It
remains to show that there is a rainbow disconnection coloring of Wn using only
the colors 1, 2, 3. Suppose that Cn = (v1, v2, . . . , vn, v1) and that v is the center
of Wn. Define an edge-coloring c : E(Wn) → {1, 2, 3} of Wn as follows. First,
let c be a proper edge-coloring of Cn using the colors 1, 2, 3. For each integer i

with 1 ≤ i ≤ n, let ai ∈ {1, 2, 3} − {c(vi−1vi), c(vivi+1)} where each subscript is
expressed as an integer 1, 2, . . . , n modulo n, and let c(vvi) = ai. Thus, the set
Evi of the three edges incident with vi is a rainbow set for 1 ≤ i ≤ n. Let x

and y be two distinct vertices of Wn. Then at least one of x and y belongs to
Cn, say x ∈ V (Cn). Since Ex separates x and y, it follows that c is a rainbow
disconnection coloring of Wn using three colors. Hence, rd(Wn) = 3.

Since χ′(Cn) = 3 when n ≥ 3 is odd and χ′(Wn) = n for each integer
n ≥ 3, it follows that rd(G) < χ′(G) if G is an odd cycle or if G is a wheel of
order at least 4. Wheels therefore illustrate that there are graphs G for which
χ′(G)− rd(G) can be arbitrarily large. We now give an example of a graph G for
which λ+(G) < rd(G) = χ′(G).

Proposition 2.5. The rainbow disconnection number of the Petersen graph is 4.

Proof. Let P denote the Petersen graph where V (P ) = {v1, v2, . . . , v10}. Since
λ(P ) = 3 and χ′(P ) = 4, it follows by Proposition 2.2 that rd(P ) = 3 or rd(P ) =
4. Assume, to the contrary, that rd(P ) = 3 and let there be given a rainbow
disconnection 3-coloring of P . Now, let u and v be two vertices of P and let
R be a u − v rainbow cut. Hence, |R| ≤ 3 and P − R is disconnected, where
u and v belong to different components of P − R. Let U be the vertex set of
the component of P − R containing u, where |U | = k. We may assume that
1 ≤ k ≤ 5. First, suppose that 1 ≤ k ≤ 4. Since the girth of P is 5, the subgraph
P [U ] induced by U contains k− 1 edges. Therefore, |R| = 3k− (2k− 2) = k+2,
where then 3 ≤ k + 2 ≤ 6. If k = 5, then P [U ] contains at most five edges and
so |R| ≥ 5, which is impossible. Since rd(P ) = 3, it follows that |R| ≤ 3 and so
k = 1. Hence, the only possible u − v rainbow cut is the set of the three edges
incident with u (or with v).

Let the colors assigned to the edges of P be red, blue and green. Since
χ′(P ) = 4, there is at least one vertex of P that is incident with two edges of the
same color. We claim, in fact, that there are at least two such vertices. Let ER,
EB and EG denote the sets of edges of P colored red, blue and green, respectively,
and let PR, PB and PG be the spanning subgraphs of P with edge sets ER, EB

and EG. We may assume that |ER| ≥ |EB| ≥ |EG| and so |ER| ≥ 5. If |ER| ≥ 7,
then

∑10
i=1 degPR

vi ≥ 14. Since degPR
vi ≤ 3 for each i with 1 ≤ i ≤ 10, at least



two vertices are incident with two red edges, verifying the claim. If |ER| = 6, then
∑10

i=1 degPR
vi = 12. Then either (i) at least two vertices are incident with two

red edges or (ii) there is a vertex, say v10, incident with three red edges and each
of v1, v2, . . . , v9 is incident with exactly one red edge. If (ii) occurs, then either
|EB| = 6 or |EB| = 5 and so

∑9
i=1 degPB

vi ≥ 10, which implies that at least one
of the vertices v1, v2, . . . , v9 is incident with two blue edges, again verifying the
claim.

The only remaining possibility is therefore |ER| = |EB| = |EG| = 5. If ER

is an independent set of five edges, then P − ER is a 2-regular graph. Since
the girth of P is 5 and P is not Hamiltonian, it follows that P − ER consists of
two vertex-disjoint 5-cycles. Thus, there is a vertex of P in each cycle incident
with two blue edges or with two green edges, verifying the claim. Hence, none of
ER, EB or EG is an independent set. This implies that for each of these colors,
there is a vertex of P incident with two edges of this color, verifying the claim in
general.

Thus, P contains two vertices u and v, each of which is incident with two
edges of the same color. Since the only u − v rainbow cut is the set of edges
incident with u or v, this is a contradiction.

The following two results are useful.

Proposition 2.6. If H is a connected subgraph of a graph G, then rd(H) ≤
rd(G).

Proof. Let c be an rd-coloring of G and let u and v are two vertices of G.
Suppose that R is a u − v rainbow cut. Then R ∩ E(H) is a u − v rainbow cut
in H. Hence, c restricted to H is a rainbow disconnection coloring of H. Thus,
rd(H) ≤ rd(G).

A block of a graph is a maximal connected graph of G containing no cut-
vertices. The block decomposition of G is the set of blocks of G.

Proposition 2.7. Let G be a nontrivial connected graph, and let B be a block of

G such that rd(B) is maximum among all blocks of G. Then rd(G) = rd(B).

Proof. Let G be a nontrivial connected graph. Let {B1, B2, . . . , Bt} be a block
decomposition of G, and let k = max{rd(Bi) |1 ≤ i ≤ t}. If G has no cut-vertex,
then G = B1 and the result follows. Hence, we may assume that G has at least
one cutvertex. By Proposition 2.6, k ≤ rd(G).

Let ci be an rd-coloring of Bi. We define the edge-coloring c : E(G) → [k] of
G by c(e) = ci(e) if e ∈ E(Bi).

Let x, y ∈ V (G). If there exists a block, say Bi, that contains both x and y,
then any x − y rainbow cut in Bi is an x − y rainbow cut in G. Hence, we can
assume that no block of G contains both x and y, and that x ∈ Bi and y ∈ Bj ,



where i 6= j. Now every x − y path contains a cut-vertex, say v, of G in Bi

and a cutvertex, say w, of G in Bj . Note that v could equal w. If x 6= v, then
any x − v rainbow cut of Bi is an x − y rainbow cut in G. Similarly, if y 6= w,
then any y − w rainbow cut of Bj is an x − y rainbow cut in G. Thus, we may
assume that x = v and y = w. It follows that v 6= w. Consider the x − y path
P = (x = v1, v2, . . . , vp = y). Since x and y are cutvertices in different blocks
and no block contains both x and y, P contains a cut-vertex z of G in Bi, that
is, z = vk for some k (2 ≤ k ≤ p − 1). Then any x − z rainbow cut of Bi is an
x− y rainbow cut of G. Hence, rd(G) ≤ k, and so rd(G) = k.

As a consequence of Proposition 2.7, the study of rainbow disconnection num-
bers can be restricted to 2-connected graphs. We now present several corollaries
of Proposition 2.7.

Corollary 2.8. Let G and H be any two nontrivial connected graphs, and let

GvH be a graph formed by identifying a vertex in G with a vertex in H. Then

rd(GvH) = max{rd(G), rd(H)}.

Corollary 2.9. Let G and H be any two nontrivial connected graphs, and let

GuvH be a graph formed by adding an edge between any vertex u in G and any

vertex v in H. Then rd(GuvH) = max{rd(G), rd(H)}.

Corollary 2.10. Let G be a nontrivial connected graph and G′ the graph obtained

by attaching a pendant edge uv to some vertex u of G. Then rd(G′) = rd(G).

The corona G ◦K1 is the graph obtained from G by attaching a leaf to each
vertex of G. Thus, if G has order n, then the corona G ◦ K1 has order 2n and
has precisely n leaves.

Corollary 2.11. If G is a nontrivial connected graph, then rd(G ◦K1) = rd(G).

Corollary 2.12. Let G be a nontrivial connected graph, let T be a nontrivial tree

and let u and v be vertices of G and T , respectively. If H is the graph obtained

from G and T by identifying u and v, then rd(H) = rd(G).

A unicyclic graph is a connected graph with exactly one cycle.

Corollary 2.13. If G is a unicyclic graph G, then rd(G) = 2.

3. Graphs with Prescribed Order and Rainbow Disconnection

Number

In this section, we characterize all those nontrivial connected graphs of order n

with rainbow disconnection number k for each k ∈ {1, 2, n − 1}. The result for
graphs having rainbow disconnection number 1 follows directly from Propositions
2.6 and 2.7.



Proposition 3.1. Let G be a nontrivial connected graph. Then rd(G) = 1 if and

only if G is a tree.

Next, we characterize all nontrivial connected graphs of order n having rain-
bow disconnection number 2. By Proposition 3.1, such a graph must contain a
cycle. An ear of a graph G is a maximal path whose internal vertices have de-
gree 2 in G. An ear decomposition of a graph is a decomposition H0, H1, . . . , Hk

such that H0 is a cycle in G and Hi is an ear of the subgraph of G with edge
set E(H0) ∪ E(H1) ∪ · · · ∪ E(Hi) for each integer i with 1 ≤ i ≤ k. Whitney [8]
proved the following result in 1932.

Theorem 3.2. A graph G is 2-connected if and only if G has an ear decomposi-

tion. Furthermore, every cycle is the initial cycle in some ear decomposition of G.

The following is a consequence of Theorem 3.2.

Lemma 3.3. A 2-connected graph G is a cycle if and only if for every two vertices

u and v of G, there are exactly two internally disjoint u− v paths in G.

Also, by Theorem 3.2, if G is a 2-connected, non-Hamiltonian graph, then
G contains a theta subgraph (a subgraph consisting of two vertices connected by
three internally disjoint paths of length 2 or more).

Theorem 3.4. Let G be a nontrivial connected graph. Then rd(G) = 2 if and

only if each block of G is either K2 or a cycle and at least one block of G is a

cycle.

Proof. If G a nontrivial connected graph, each block of which is either K2 or a
cycle and at least one block of G is a cycle, then Propositions 2.3 and 2.7 imply
that rd(G) = 2.

We now verify the converse. Assume, to the contrary, that there is a con-
nected graph G with rd(G) = 2 that does not have the property that each block
of G is either K2 or a cycle and at least one block of G is a cycle. First, not all
blocks can be K2, for otherwise, G is a tree and so rd(G) = 1 by Proposition 3.1.
Hence, G contains a block that is neither K2 nor a cycle. By Lemma 3.3, there
exist two distinct vertices u and v of G for which G contains at least three inter-
nally disjoint u − v paths P1, P2 and P3. Thus, any u − v rainbow cut R must
contain at least one edge from each of P1, P2 and P3 and so |R| ≥ 3, which is
impossible.

We now consider those graphs that are, in a sense, opposite to trees.

Proposition 3.5. For each integer n ≥ 4, rd(Kn) = n− 1.



Proof. Suppose first that n ≥ 4 is even. Then λ(Kn) = χ′(Kn) = n− 1. It then
follows by Proposition 2.2 that rd(Kn) = n−1. Next, suppose that n ≥ 5 is odd.
Then n − 1 = λ(Kn) ≤ rd(Kn) ≤ χ′(Kn) = n by Proposition 2.2. To show that
rd(Kn) = n−1, it remains to show that there is a rainbow disconnection coloring
of Kn using n− 1 colors. Let x ∈ V (Kn). Then Kn − x = Kn−1. Since n− 1 is
even, it follows that χ′(Kn−1) = n − 2. Thus, there is a proper edge-coloring c0
of Kn−1 using the colors 1, 2, . . . , n − 2. We now extend c0 to an edge-coloring
c of Kn by assigning the color n− 1 to each edge of Kn that is incident with x.
We show that c is a rainbow disconnection coloring of Kn. Let u and v be two
vertices of Kn, where say u 6= x. Then the set Eu of edges incident with u is
a u − v rainbow cut. Thus, c is a rainbow disconnection coloring of Kn and so
rd(Kn) ≤ n− 1 and so rd(Kn) = n− 1.

By Propositions 2.2, 2.6 and 3.5, if G is a nontrivial connected graph of order
n, then

(1) 1 ≤ rd(G) ≤ n− 1.

Furthermore, rd(G) = 1 if and only if G is a tree by Proposition 3.1. We have
seen that the complete graphs Kn of order n ≥ 2 have rainbow disconnection
number n − 1. We now characterize all nontrivial connected graphs of order n

having rainbow disconnection number n− 1.

Theorem 3.6. Let G be a nontrivial connected graph of order n. Then rd(G) =
n− 1 if and only if G contains at least two vertices of degree n− 1.

Proof. First, suppose that G is a nontrivial connected graph of order n contain-
ing at least two vertices of degree n− 1. Since rd(G) ≤ n− 1 by (1), it remains
to show that rd(G) ≥ n − 1. Let u, v ∈ V (G) such that deg u = deg v = n − 1.
Among all sets of edges that separate u and v in G, let S be one of minimum
size. We show that |S| ≥ n− 1. Let U be a component of G− S that contains u
and let W = V (G)− U . Thus, v ∈ W and S = [U,W ] consists of those edges in
G − S joining a vertex of U and a vertex of W . Suppose that |U | = k for some
integer k with 1 ≤ k ≤ n− 1 and then |W | = n− k. The vertex u is adjacent to
each of the n− k vertices of W and each of the remaining k − 1 vertices in U is
adjacent to at least one vertex in W . Hence, |S| ≥ n− k+ (k− 1) = n− 1. This
implies that every u − v rainbow cut contains at least n − 1 edges of G and so
rd(G) ≥ n− 1.

For the converse, suppose that G is a nontrivial connected graph of order n
having at most one vertex of degree n − 1. We show that rd(G) ≤ n − 2. We
consider two cases.

Case 1. Exactly one vertex v of G has degree n− 1. Let H = G− v. Thus,
∆(H) ≤ n− 3. Since χ′(H) ≤ ∆(H) + 1 = n− 2, there is a proper edge-coloring



of H using n− 2 colors. We now define an edge-coloring c : E(G) → [n− 2] of G.
First, let c be a proper (n − 2)-edge-coloring of H. For each vertex x ∈ V (H),
since degH x ≤ n − 3, there is ax ∈ [n − 2] such that ax is not assigned to any
edge incident with x. Define c(vx) = ax. Thus, the set Ex of edges incident with
x is a rainbow set for each x ∈ V (H). Let u and w be two distinct vertices of G.
Then at least one of u and w belongs to H, say u ∈ V (H). Since Eu separates
u and w, it follows that c is a rainbow disconnection coloring of G using n − 2
colors. Hence, rd(G) ≤ n− 2.

Case 2. No vertex of G has degree n − 1. Therefore ∆(G) ≤ n − 2. If
∆(G) ≤ n − 3, then rd(G) ≤ χ′(G) ≤ n − 2 by Proposition 2.2. Thus, we may
assume that ∆(G) = n− 2. Suppose first that G is not (n− 2)-regular. We claim
that G is a connected spanning subgraph of some graph G∗ of order n having
exactly one vertex of degree n−1. Let u be a vertex of degree k ≤ n−3 in G. Let
N(u) be the neighborhood of u and W = V (G)−N [u], where N [u] = N(u)∪{u}
is the closed neighborhood of u. Then |N(u)| = k and |W | = n−k− 1 ≥ 2. If W
contains a vertex v of degree n− 2 in G, then v is the only vertex of degree n− 1
in G∗ = G + uv. If no vertex in W has degree n − 2 in G, then let G∗ be the
graph obtained from G by joining u to each vertex in W . In this case, u is the
only vertex of degree n− 1 in G∗. It then follows by Case 1 that rd(G∗) ≤ n− 2.
Since G is a connected spanning subgraph of G∗, it follows by Proposition 2.6
that rd(G) ≤ rd(G∗) ≤ n−2. Finally, suppose that G is (n−2)-regular. Thus, G
is 1-factorable and so χ′(G) = ∆(G) = n− 2. Therefore, rd(G) ≤ χ′(G) = n− 2
by Proposition 2.2.

4. Rainbow Disconnection in Grids and Prisms

We now determine the rainbow disconnection numbers of graphs belonging to
one of two well-known classes formed by Cartesian products. The Cartesian

product G � H of two vertex-disjoint graphs G and H is the graph with vertex
set V (G)×V (H), where (u, v) is adjacent to (w, x) in G � H if and only if either
u = w and vx ∈ E(H) or uw ∈ E(G) and v = x. We consider the m × n grid
graph Gm,n = Pm � Pn, which consists of m horizontal paths Pn and n vertical
paths Pm.

Theorem 4.1. The rainbow disconnection numbers of the grid graphs Gm,n are

as follows:

(i) for all n ≥ 2, rd(G1,n) = rd(Pn) = 1,

(ii) for all n ≥ 3, rd(G2,n) = 3,

(iii) for all n ≥ 4, rd(G3,n) = 3,

(iv) for all 4 ≤ m ≤ n, rd(Gm,n) = 4.



Proof. (i) That rd(G1,n) = rd(Pn) = 1 for n ≥ 2 is a consequence of Proposi-
tion 3.1.

For the remainder of the proof, we consider the vertices of Gm,n as a matrix,
letting xi,j denote the vertex in row i and column j, where 1 ≤ i ≤ m and
1 ≤ j ≤ n.

(ii) For the graph G2,n, n ≥ 3, ∆(G2,n) = 3. First, we define an edge-coloring
c of G2,n. It is convenient to use the elements of the set Z3 of integer modulo 3
as colors here. Define the edge-coloring c : E(G2,n) → Z3 by

⋆ c(xi,jxi,j+1) = i+ j + 1 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n− 1;

⋆ c(x1,jx2,j) = j for 1 ≤ j ≤ n.

Next, we show that c is a rainbow disconnection coloring of G2,n. Let u and
v be any two vertices of G2,n. If u and v belong to two different columns, then
there exist two parallel edges joining vertices in the same two columns whose
removal separates u and v. Each such set of two edges is a u − v rainbow cut.
Next, suppose that u and v belong to the same column. Then, without loss of
generality, u belongs to the first row and v belongs to the second row. Then u

and v both have degree 2 or both have degree 3. Therefore, the edges incident
with u form a rainbow cut, and so, rd(G2,n) ≤ 3.

On the other hand, λ(u, v) = 2 if u and v are two vertices of G2,n belonging
to the same row, or different rows and columns or are two vertices of degree 2
belonging to the same column; while λ(u, v) = 3 if u and v are (adjacent) vertices
of degree 3 belonging to the same column. It then follows by Proposition 2.2 that
3 = λ+(G2,n) ≤ rd(G2,n), and so rd(G2,n) = 3.

(iii) As with G2,n, we define an edge-coloring c of G3,n. Again we use the
elements of the set Z3 of integer modulo 3 as colors here. Define the edge-coloring
c : E(G3,n) → Z3 by

⋆ c(xi,jxi,j+1) = i+ j + 1 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ n− 1;

⋆ c(x1,jx2,j) = j for 1 ≤ j ≤ n;

⋆ c(x2,jx3,j) = j + 2 for 1 ≤ j ≤ n.

Next, we show that c is a rainbow disconnection coloring of G3,n. Let u and
v be any two vertices of G3,n. If u and v belong to two different columns, then
there exist three parallel edges joining vertices in the same two columns whose
removal separates u and v. Each such set of three edges is a u − v rainbow cut.
Next, suppose that u and v belong to the same column. Then at least one of u
and v belongs to the top or bottom row, say u is such a vertex, which has degree 2
or 3. Then the edges incident with u is a u− v rainbow cut. Thus, rd(G3,n) ≤ 3.

On the other hand, for any two adjacent vertices u and v of degree 4 in
G3,n (necessarily in the middle row), λ+(u, v) = 3. Thus, by Proposition 2.2,
3 ≤ λ+(G3,n) ≤ rd(G3,n) ≤ 3 and so rd(G3,n) = 3.



(iv) Finally, we consider Gm,n for 4 ≤ m ≤ n. Since there are four pairwise
edge-disjoint u − v paths in Gm,n for every two vertices u and v of degree 4, it
follows by Theorem 2.1 that λ(u, v) = 4. For any other pair u, v of vertices of
Gm,n, it follows that λ(u, v) ≤ 3. By Proposition 2.2 then, 4 = λ+(Gm,n) ≤
rd(Gm,n). On the other hand, since Gm,n is bipartite, χ′(Gm,n) = ∆(Gm,n) = 4.
Again, by Proposition 2.2, rd(Gm,n) ≤ 4 and so rd(G4,n) = 4.

Next we determine the rainbow disconnection number of prisms, namely
those graphs of the type G � K2 for some graph G.

Proposition 4.2. If G is a nontrivial connected graph, then

rd(G � K2) = ∆(G) + 1.

Proof. Let G and G′ be the two copies of G in the prism G � K2, and for
each v ∈ V (G), let v′ be its corresponding vertex in G′. We first show that
G �K2 has a proper edge-coloring using ∆(G � K2) = ∆(G) + 1 colors, that is,
χ′(G � K2) = ∆(G)+1. Let C be a proper edge-coloring of G using χ′(G) colors.
Color the edges of G and G′ using C, that is, G and G′ have an identical edge-
coloring C. By Vizing’s Theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. First assume that
χ′(G) = ∆(G). Then assigning the color ∆(G) + 1 to each edge vv′ for every v ∈
V (G) gives a proper edge-coloring of G � K2 with ∆(G)+1 colors. Next assume
that χ′(G) = ∆(G) + 1. Then for each v ∈ V (G), at least one of the ∆(G) + 1
colors is missing from the colors of the edges incident to v. Let cv be one such
missing color. Note that cv is also missing from the colors of the edges incident
to v′ in G′ because G and G′ have the identical colorings. Hence, assigning cv to
vv′ for each v ∈ V (G) yields a proper edge-coloring of G � K2 having ∆(G) + 1
colors. By Proposition 2.2, it follows that rd(G � K2) ≤ ∆(G) + 1.

To establish the lower bound, let u be a vertex of G with deg u = ∆(G) = ∆.
In G � K2, there exist ∆+ 1 edge-disjoint u− u′ paths, one of which is the edge
uu′ and the remaining ∆ of which have the form (u,w,w′, u′), where w ∈ V (G)
and w′ is the corresponding vertex of w in G′. It again follows by Proposition
2.2 that rd(G � K2) ≥ λ+(G � K2) ≥ ∆(G) + 1.

Complementary products were introduced in [4] as a generalization of Carte-
sian products. We consider a subfamily of complementary products, namely,
complementary prisms. For a graph G = (V,E), the complementary prism, de-
noted GG, is formed from the disjoint union of G and its complement G by
adding a perfect matching between corresponding vertices of G and G. For each
v ∈ V (G), let v denote the vertex in G corresponding to v. Formally, the graph
GG is formed from G∪G by adding the edge vv for every v ∈ V (G). We note that
complementary prisms are a generalization of the Petersen graph. In particular,
the Petersen graph is the complementary prism C5C5. For another example of a
complementary prism, the corona Kn ◦K1 is the complementary prism KnKn.



We refer to the complementary prism GG as a copy of G and a copy of G with
a perfect matching between corresponding vertices. For a set S ⊆ V (G), let S

denote the corresponding set of vertices in V (G). We note that GG is isomorphic
to GG.

Since ∆(GG) = max{∆(G),∆(G)}+1, Proposition 2.2 implies that rd(GG) ≤
max{∆(G),∆(G)} + 2. This bound is sharp for the Petersen graph P = C5C5

since by Proposition 2.5, rd(P ) = 4 = ∆(C5) + 2. On the other hand, for the
complementary prisms KnKn, Corollary 2.11 and Proposition 3.5 imply that
rd(KnKn) = rd(Kn) = n − 1 = ∆(Kn) < max{∆(Kn),∆(Kn} + 2 = n + 1.
Our next result shows that for graphs G with sufficiently large girth, rd(GG) is
strictly greater than the maximum degree of G.

Proposition 4.3. If G is a graph of order n, maximum degree ∆(G) < n − 1,
and girth at least five, then

∆(G) + 1 ≤ rd(GG).

Proof. Consider a vertex u in G such that degGu = ∆(G). Let A = NG(u) and
B = V −NG[u]. Thus, in GG, N(u) = B ∪ {u}. Note that since n− 1 > ∆(G),
it follows that B 6= ∅.

We claim there are ∆(G) + 1 edge-disjoint u-b paths, where b ∈ B. To see
this note that one such path is (u, u, b). Next consider the u-b paths containing
a vertex a ∈ A. If a is not adjacent to b in G, then a is adjacent to b in G and
(u, a, a, b) is a u-b path. If ab ∈ E(G), then (u, a, b, b) is a u-b path. Moreover,
since g(G) ≥ 5, at most one vertex in A is adjacent to b, else a 4-cycle is formed.
In any case, the collection of these |A| + 1 = ∆(G) + 1 paths are edge-disjoint.
Hence, by Proposition 2.2, it follows that rd(GG) ≥ λ+(GG) ≥ ∆(G) + 1.

For an example of a complementary prism attaining the lower bound, let
G be the graph formed from a 5-cycle by attaching a leaf x to a vertex v of
the cycle. Then, ∆(G) = 3. We show that rd(GG) = 4. First note that the
Petersen graph P is a proper subgraph of GG, and by Propositions 2.5 and 2.6,
rd(GG) ≥ rd(P ) = 4. Furthermore, there is a proper edge-coloring c of P using
four colors such that three colors are used to color C5 and C5 and the fourth color
is used on the matching edges. Thus, we may assume, without loss of generality,
that v is incident to the edges colored 1 and 2 in G and that vv is assigned color 4.
We extend c to a rainbow disconnection coloring of GG as follows: let c(vx) = 3,
c(xx) = 4, and c(xu) be the color missing from the edges incident to u for each
u adjacent to x in G. Consider two arbitrary vertices of GG. At least one of
the vertices, say u, is not x. Thus, the edges incident with u are a rainbow cut
separating the two vertices. Since every such vertex u has degree at most four,
rd(GG) ≤ 4, and so, rd(GG) = 4.



5. Extremal Problems

In this section, we investigate the following problem:

For a given pair k, n of positive integers with k ≤ n − 1, what are the
minimum possible size and maximum possible size of a connected graph
G of order n such that the rainbow disconnection number of G is k?

We have seen in Proposition 3.1 that the only connected graphs of order n having
rainbow disconnection number 1 are the trees of order n. That is, the connected
graphs of order n having rainbow disconnection number 1 have size n − 1. We
have also seen in Theorem 3.4 that the minimum size of a connected graph of
order n ≥ 3 having rainbow disconnection number 2 is n. Furthermore, we have
seen in Theorem 3.6 that the minimum size of a connected graph of order n ≥ 2
having rainbow disconnection number n − 1 is 2n − 3. In fact, these are special
cases of a more general result. In order to show this, we first present a lemma.

Lemma 5.1. Let H be a connected graph of order n that is not complete and let

x and y be two nonadjacent vertices of H. Then rd(H + xy) ≤ rd(H) + 1.

Proof. Suppose that rd(H) = k for some positive integer k and let c0 be a
rainbow disconnection coloring of H using the colors 1, 2, . . . , k. Extend the
coloring c0 to the edge-coloring c of H + xy by assigning the color k + 1 to the
edge xy. Let u and v be two vertices of H and let R be a u−v rainbow cut in H.
Then R∪{xy} is a u−v rainbow cut inH+xy. Hence, c is a rainbow disconnection
(k + 1)-coloring of H + xy. Therefore, rd(H + xy) ≤ k + 1 = rd(H) + 1.

Theorem 5.2. For integers k and n with 1 ≤ k ≤ n− 1, the minimum size of a

connected graph of order n having rainbow disconnection number k is n+ k − 2.

Proof. By Proposition 3.5, the result is true for k = n − 1. Hence, we may
assume that 1 ≤ k ≤ n− 2. First, we show that if the size of a connected graph
G of order n is n + k − 2, then rd(G) ≤ k. We proceed by induction on k. We
have seen that the result is true for k = 1, 2 by Proposition 3.1 and Theorem 3.4.
Suppose that if the size of a connected graph H of order n is n+ k − 2 for some
integer k with 2 ≤ k ≤ n − 3, then rd(H) ≤ k. Let G be a connected graph of
order n and size n+ (k+1)− 2 = n+ k− 1. We show that rd(G) ≤ k+1. Since
G is not a tree, there is an edge e such that H = G− e is a connected spanning
subgraph of G. Since the size of H is n+k−2, it follows by induction hypothesis
that rd(H) ≤ k. Hence, rd(G) = rc(H + e) ≤ k + 1 by Lemma 5.1. Therefore,
the minimum possible size for a connected graph G of order n to have rd(G) = k

is n+ k − 2.
It remains to show that for each pair k, n of integers with 1 ≤ k ≤ n−1 there

is a connected graph G of order n and size n+k−2 such that rd(G) = k. Since this



is true for k = 1, 2, n− 1, we now assume that 3 ≤ k ≤ n− 2. Let H = K2,k with
partite set U = {u1, u2} and W = {w1, w2, . . . , wk}. Now, let G be the graph of
order n and size n+ k− 2 obtained from H by subdividing the edge u1w1 a total
of n−k−2 times, producing the path P = (u1, v1, v2, . . . , vn−k−2, w1) in G. Since
χ′(H) = k, there is a proper edge-coloring cH of H using the colors 1, 2, . . . , k.
We may assume that c(u1w1) = 1 and c(u2w1) = 2. Next, we extend the coloring
cH to a proper edge-coloring cG of G using the colors 1, 2, . . . , k by defining
cG(u1v1) = 1 and alternating the colors of the edges of P with 3 and 1 thereafter.
Hence, χ′(G) = k and so rd(G) ≤ χ′(G) = k by Proposition 2.2. Furthermore,
since λ(u1, u2) = k and λ(x, y) = 2 for all other pairs x, y of vertices of G, it
follows that λ+(G) = k. Again, by Proposition 2.2, rd(G) ≥ λ+(G) = k and so
rd(G) = k.

For given integers k and n with 1 ≤ k ≤ n − 1, we have determined the
minimum size of a connected graph G of order n with rd(G) = k. So, this brings
up the question of determining the maximum size of a connected graph G of
order n with rd(G) = k. Of course, we know this size when k = 1; it is n − 1.
Also, we know this size when k = n − 1; it is

(

n
2

)

. For odd integers n, we have
the following conjecture.

Conjecture 5.3. Let k and n be integers with 1 ≤ k ≤ n− 1 and n ≥ 5 is odd.

Then the maximum size of a connected graph G of order n with rd(G) = k is
(k+1)(n−1)

2 .

Notice that when k = 1, then (k+1)(n−1)
2 = n − 1 and when k = n − 1, then

(k+1)(n−1)
2 =

(

n
2

)

. Also, when k = 2, then (k+1)(n−1)
2 = 3n−3

2 . This is the size of

the so-called friendship graph
(

k−1
2

)

K2 ∨K1 of order n (every two vertices has a
unique friend). Since each block of a friendship graph is a triangle, it follows by
Theorem 3.4 that each such graph has rainbow disconnection number 2.

For given integers k and n with 1 ≤ k ≤ n− 1 and n ≥ 5 is odd, let Hk be a
(k − 1)-regular graph of order n − 1. Since n − 1 is even, such graphs Hk exist.
Now, let Gk = Hk ∨K1 be the join of Hk and K1. Thus, Gk is a connected graph
of order n having one vertex of degree n− 1 and n− 1 vertices of degree k. The
size m of Gk satisfies the equation:

2m = (n− 1) + (n− 1)k = (k + 1)(n− 1)

and so m = (k+1)(n−1)
2 . The graph Hk can be selected so that it is 1-factorable

and so χ′(Hk) = k− 1. If a proper (k− 1)-edge-coloring of Hk is given using the
colors 1, 2, . . . , k−1, and every edge incident with the vertex of Gk of degree n−1
is assigned the color k, then the edges incident with each vertex of degree k are
properly colored with k colors. For any two vertices u and v of Gk, at least one of



u and v has degree k in Gk, say degGk
u = k. Then the set of edges incident with

u is a u − v rainbow cut in H. Since this is a rainbow disconnection k-coloring
of G, it follows that rd(Gk) ≤ k. It is reasonable to conjecture that rd(Gk) = k.

We would still be left with the question of whether every graph H of order
n and size (k+1)(n−1)

2 + 1 must have rd(H) > k. Certainly, every such graph H

must contain at least two vertices whose degrees exceed k.
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