
Finite Model Computation via Answer Set Programming

Martin Gebser and Orkunt Sabuncu and Torsten Schaub∗

Universität Potsdam, Potsdam, Germany
{gebser,orkunt,torsten}@cs.uni-potsdam.de

Abstract

We show how Finite Model Computation (FMC) of
first-order theories can efficiently and transparently
be solved by taking advantage of an extension of
Answer Set Programming, called incremental An-
swer Set Programming (iASP). The idea is to use
the incremental parameter in iASP programs to ac-
count for the domain size of a model. The FMC
problem is then successively addressed for increas-
ing domain sizes until an answer set, representing
a finite model of the original first-order theory, is
found. We developed a system based on the iASP
solver iClingo and demonstrate its competitiveness.

1 Introduction

While Finite Model Computation (FMC; [Caferra et al.,
2004]) constitutes an established research area in the
field of Automated Theorem Proving (ATP; [Robinson and
Voronkov, 2001]), Answer Set Programming (ASP; [Baral,
2003]) has become a widely used approach for declarative
problem solving, featuring manifold applications in the field
of Knowledge Representation and Reasoning. Up to now,
however, both FMC and ASP have been studied in separa-
tion, presumably due to their distinct hosting research fields.
We address this gap and show that FMC can efficiently and
transparently be solved by taking advantage of a recent ex-
tension of ASP, called incremental Answer Set Programming
(iASP; [Gebser et al., 2008]).

Approaches to FMC for first-order theories [Tammet,
2003] fall in two major categories, translational and con-
straint solving approaches. In translational approaches [Mc-
Cune, 1994; Claessen and Sörensson, 2003], the FMC prob-
lem is divided into multiple satisfiability problems in propo-
sitional logic. This division is based on the size of the finite
domain. A Satisfiability (SAT; [Biere et al., 2009]) solver
searches in turn for a model of the subproblem having a fi-
nite domain of fixed size, which is gradually increased until a
model is found for the subproblem at hand. In the constraint
solving approach [Zhang, 1996], a system computes a model
by incrementally casting FMC into a constraint satisfaction

∗Affiliated with Simon Fraser University, Canada, and Griffith
University, Australia.

problem. While systems based on constraint solving are ef-
ficient for problems with many unit equalities, translation-
based ones are applicable to a much wider range of problems
[Tammet, 2003]. Natural application areas of FMC include
verification, where it can serve to identify counterexamples.

In fact, translational approaches to FMC bear a strong re-
semblance to iASP. The latter was developed for dealing with
dynamic problems like model checking and planning. To this
end, iASP foresees an integer-valued parameter that is con-
secutively increased until a problem is found to be satisfiable.
Likewise, in translation-based FMC, the size of the interpre-
tations’ domain is increased until a model is found. This
similarity in methodologies motivates us to encode and solve
FMC by means of iASP.

The idea is to use the incremental parameter in iASP to
account for the domain size. Separate subproblems consid-
ered in translational approaches are obtained by grounding
an iASP encoding, where care is taken to avoid redundancies
between subproblems. The parameter capturing the domain
size is then successively incremented until an answer set is
found. In the successful case, an answer set obtained for pa-
rameter value i provides a finite model of the input theory
with domain size i.

We implemented a system based on the iASP solver
iClingo [Gebser et al., 2008] and compared its performance
to various FMC systems. To this end, we used problems
from the FNT (First-order form Non-Theorems) division of
CADE’s 2009 and 2010 ATP competitions. The results
demonstrate the competitiveness of our system. On the
benchmark collection used in 2009, iClingo solved the same
number of problems as Paradox [Claessen and Sörensson,
2003] in approximately half of its run time on average. Note
that Paradox won first places in the FNT division each year
from 2007 to 2010.

The paper is organized as follows. The next section intro-
duces basic concepts about the translational approach to FMC
and iASP. Section 3 describes our encoding of FMC and how
it is generated from a given set of clauses. Information about
our system can be found in Section 4. We empirically evalu-
ate our system in Section 5 and conclude in Section 6.

2 Background

We assume the reader to be familiar with the terminology and
basic definitions of first-order logic and ASP. In what follows,

2626

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



we thus focus on the introduction of concepts needed in the
remainder of this paper.

In our approach, we translate first-order theories into sets
of flat clauses. A clause is flat if (i) all its predicates and func-
tions have only variables as arguments, (ii) all occurrences of
constants and functions are within equality predicates, and
(iii) each equality predicate has at least one variable as an ar-
gument. Any first-order clause can be transformed into an eq-
uisatisfiable flat clause via flattening [McCune, 1994], done
by repeatedly applying the rewrite rule C[t]� (C[X]∨(X �=
t)), where t is a term offending flatness and X is a fresh vari-
able. For instance, the clause (f(X) = g(Y )) can be turned
into the flat clause (Z = g(Y )) ∨ (Z �= f(X)). In the trans-
lational approach to FMC, flattening is used to bring the input
into a form that is easy to instantiate using domain elements.

As regards ASP, we rely on the language supported by
the grounder gringo [Gebser et al., 2011], providing nor-
mal and choice rules as well as cardinality and integrity
constraints. (For the use of ASP languages in declara-
tive problem solving, the reader may refer to [Baral, 2003;
Gebser et al., 2011].) As usual, rules with variables are re-
garded as representatives for all respective ground instances.
Beyond that, our approach makes use of iASP [Gebser et al.,
2008] that allows for dealing with incrementally growing do-
mains. In iASP, a parameterized domain description is a triple
(B,P,Q) of logic programs, among which P and Q contain
a (single) parameter k ranging over positive integers. Hence,
we sometimes denote P and Q by P [k] and Q[k]. The base
program B describes static knowledge, independent of pa-
rameter k. The role of P is to capture knowledge accumu-
lating with increasing k, whereas Q is specific for each value
of k. Our goal is then to decide whether the program

R[i] = B ∪⋃
1≤j≤iP [k/j] ∪Q[k/i]

has an answer set for some (minimum) integer i ≥ 1, where
P [k/j] and Q[k/i] refer to the programs obtained from P
and Q by replacing each occurrence of parameter k with j
or i, respectively. In what follows, we refer to rules in B,
P [k], and Q[k] as being static, cumulative, and volatile, re-
spectively.

3 Approach

In this section, we present our encoding of FMC in iASP. The
first task, associating terms with domain elements, is dealt
with in Section 3.1, and Section 3.2 describes the evaluation
of (flat) clauses within iASP programs. In Section 3.3, we
explain how a model of a first-order theory is then read off
from an answer set. Section 3.4 addresses symmetry breaking
in FMC. Due to space limitations, we omit some encoding
details, which can be found in [Gebser et al., 2010].

Throughout this section, we illustrate our approach on the
following running example:

p(a)
(∀X) ¬q(X,X)
(∀X) (p(X) → (∃Y ) q(X,Y )). (1)

The first preprocessing step, clausification of the theory,
yields the following:

p(a)
¬q(X,X)
¬p(X) ∨ q(X, sko(X)).

The second step, flattening, transforms these clauses into the
following ones:

p(X) ∨ (X �= a)
¬q(X,X)
¬p(X) ∨ q(X,Y ) ∨ (Y �= sko(X)). (2)

Such flat clauses form the basis for our iASP encoding. Be-
fore we present it, note that the theory in (2) has a model I
over domain {1, 2} given by:

aI = 1

skoI = {1 	→ 2, 2 	→ 2}
pI = {1}
qI = {(1, 2)}. (3)

In view of equisatisfiability, the model I satisfies also the
original theory in (1), even if skoI is dropped.

3.1 Interpreting Terms

In order to determine a model, we need to associate the (non-
variable) terms in the input with domain elements. To this
end, every constant c is represented by a fact cons(c)., be-
longing to the static part of our iASP program. For instance,
the constant a found in (2) gives rise to the following fact:

cons(a). (4)

Our iASP encoding uses the predicate assign(T,D) to rep-
resent that a term T is mapped to a domain element D. Here
and in the following, we write k to refer to the incremental
parameter in an iASP program. Unless stated otherwise, all
rules provided in the sequel are cumulative by default. For
constants, the following (choice) rule then allows for map-
ping them to the kth domain element:

{assign(T, k)} ← cons(T ). (5)

The set notation in the head indicates that (unlike with strict
rules such as the fact in (4)) one may freely choose whether
to make assign(T, k) true, provided that the body cons(T )
holds for a respective instance of T . Also note that, by using k
in assign(T, k), it is guaranteed that instances of the rule are
particular to each incremental step.

Unlike with constants, the argument tuples of functions
grow when k increases. To deal with this, we first declare
auxiliary facts to represent available domain elements:

dom(k). arg(k, k). (6)

Predicates dom and arg are then used to qualify the argu-
ments of a function in the input, such as sko in (2). Its in-
stances are in turn derived via the following rule:

func(sko(X)) ← dom(X), 1{arg(X, k)}. (7)

The cardinality constraint 1{arg(X, k)} stipulates at least
one of the arguments of sko, which is only X in this case,
to be k. As in (5), though using a different methodology, this
makes sure that the (relevant) instances of (7) are particular

2627



to a value of k. However, note that rules of the above form
need to be provided separately for each function in the input,
given that the arities of functions matter.

To represent new mappings via a function when k in-
creases, the previous methodology can easily be extended to
requiring some argument or alternatively the function value
to be k. For instance, the rule encoding mappings via unary
function sko is as follows:

{assign(sko(X), Y )} ← dom(X), dom(Y ),
1{arg(X, k), arg(Y, k)}. (8)

Observe that the cardinality constraint 1{arg(X, k),
arg(Y, k)} necessitates at least one of argument X or
value Y of function sko to be k, which in the same fashion
as before makes the (relevant) instances of the rule particular
to each incremental step.

To see how the previous rules are handled in iASP compu-
tations, we below show the instances of (6) and (8) generated
in and accumulated over three incremental steps:

Step 1: dom(1). arg(1, 1).
{assign(sko(1), 1)}.

Step 2: dom(2). arg(2, 2).
{assign(sko(1), 2)}.
{assign(sko(2), 1)}.
{assign(sko(2), 2)}.

Step 3: dom(3). arg(3, 3).
{assign(sko(1), 3)}.
{assign(sko(2), 3)}.
{assign(sko(3), 1)}.
{assign(sko(3), 2)}.
{assign(sko(3), 3)}.

Given that the body of (8) only relies on facts (over predi-
cates dom and arg), its ground instances can be evaluated
and then be reduced: if a ground body holds, the corre-
sponding (choice) head is generated in a step; otherwise,
the ground rule is trivially satisfied and needs not be con-
sidered any further. Hence, all rules shown above have an
empty body after grounding. Notice, for example, that rule
{assign(sko(1), 1)}. is generated in the first step, while it is
not among the new ground rules in the second and third step.

Finally, a mapping of terms to domain elements must be
unique and total. To this end, translation-based FMC ap-
proaches add uniqueness and totality axioms for each term
to an instantiated theory. In iASP, such requirements can be
encoded as follows:

← assign(T,D), assign(T, k), D < k. (9)
← cons(T ), {assign(T,D) : dom(D)}0. (10)
← func(T ), {assign(T,D) : dom(D)}0. (11)

While the integrity constraint in (9) forces the mapping of
each term to be unique, the ones in (10) and (11) stipulate
each term to be mapped to some domain element. How-
ever, since the domain grows over incremental steps and new
facts are added for predicate dom , ground instances of (10)
and (11) are only valid in the step where they are generated.
Hence, the integrity constraints in (10) and (11) belong to the
volatile part of our iASP program.

3.2 Interpreting Clauses

To evaluate an input theory, we also need to interpret its pred-
icates. The following rules allow for interpreting the predi-
cates p and q in (2):

{p(X)} ← dom(X), 1{arg(X, k)}.
{q(X,Y )} ← dom(X), dom(Y ),

1{arg(X, k), arg(Y, k)}. (12)

As discussed above, requiring the cardinality constraints in
bodies to hold guarantees that (relevant) instances are partic-
ular to each incremental step. Also note that, unlike constants
and functions, we do not reify predicates, as assigning a truth
value can be expressed more naturally without it.

Following [Simons et al., 2002], the basic idea of encod-
ing a (flat) clause is to represent it by an integrity constraint
containing the complements of the literals in the clause.
However, clauses may contain equality literals, of the form
(X = t) or (X �= t) for some non-variable term t. The com-
plements of such literals are given by not assign(t,X) and
assign(t,X), respectively.

For our running example, the clauses in (2) give rise to the
following integrity constraints:

← not p(X), assign(a,X), dom(X), 1{arg(X, k)}.
← q(X,X), dom(X), 1{arg(X, k)}.
← p(X),not q(X,Y ), assign(sko(X), Y ),

dom(X), dom(Y ), 1{arg(X, k), arg(Y, k)}. (13)

Note that we use the same technique as before to separate the
(relevant) instances obtained at each incremental step.

3.3 Extracting Models

The rules that represent the mapping of terms to domain ele-
ments (described in Section 3.1) along with those represent-
ing satisfiability of flat clauses (described in Section 3.2) con-
stitute our iASP program for FMC. To compute an answer set,
the incremental parameter k is increased by one at each step.
This corresponds to the addition of a new domain element. If
an answer set is found at step i, it means that the input theory
has a model over a domain of size i.

For the iASP program encoding the theory in (2), com-
posed of the rules in (4–13), the following answer set is ob-
tained in the second incremental step:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dom(1), dom(2), arg(1, 1), arg(2, 2),
cons(a), assign(a, 1),
func(sko(1)), assign(sko(1), 2),
func(sko(2)), assign(sko(2), 2),
p(1), q(1, 2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The corresponding model over domain {1, 2} is the one
shown in (3).

3.4 Breaking Symmetries

In view of the fact that interpretations obtained by permuting
domain elements are isomorphic, an input theory can have
many symmetric models. For example, an alternative model
to the one in (3) can easily be obtained by swapping domain

2628



elements 1 and 2. Such symmetries tend to degrade the per-
formance of FMC systems. Hence, systems based on the con-
straint solving approach, such as Sem and Falcon, apply vari-
ants of a dynamic symmetry breaking technique called least
number heuristic [Zhang, 1996]. Translation-based systems,
such as Paradox and FM-Darwin [Baumgartner et al., 2009],
statically break symmetries by narrowing how terms can be
mapped to domain elements.

Our approach to symmetry breaking is also a static one that
aims at reducing the possibilities of mapping constants to do-
main elements. To this end, we use the technique described
in [Claessen and Sörensson, 2003; Baumgartner et al., 2009],
fixing an order of the constants in the input by uniquely as-
signing a rank in [1, n], where n is the total number of con-
stants, to each of them. Given such a ranking in terms of facts
over predicate order , we can replace the rule in (5) with:

{assign(T, k)} ← cons(T ), order(T,O), k ≤ O.

For instance, if the order among three constants, c1, c2, and
c3, is given by facts order(ci, i). for i ∈ {1, 2, 3}, the follow-
ing instances of the above rule are generated in and accumu-
lated over three incremental steps:

Step 1: Step 2: Step 3:
{assign(c1, 1)}.
{assign(c2, 1)}. {assign(c2, 2)}.
{assign(c3, 1)}. {assign(c3, 2)}. {assign(c3, 2)}.

That is, while all three constants can be mapped to the first
domain element, c1 cannot be mapped to the second one, and
only c3 can be mapped to the third one. Additional rules re-
stricting the admissible mappings of constants to a “canoni-
cal form” [Claessen and Sörensson, 2003] are provided in a
forthcoming journal paper extending [Gebser et al., 2010].

Finally, we note that our iASP encoding of the theory in (2)
yields 10 answer sets in the second incremental step. If we
apply the described symmetry breaking, it disallows mapping
the single constant a to the second domain element, which
prunes 5 of the 10 models. Although our simple technique
can in general not break all symmetries related to the map-
ping of terms because it does not incorporate functions, the
experiments in Section 5 demonstrate that it may nonetheless
lead to significant performance gains. For the special case
of unary functions, an extension [Claessen and Sörensson,
2003] is implemented in Paradox; with FM-Darwin, it has
not turned out to be more effective than symmetry breaking
for only constants [Baumgartner et al., 2009].

4 System

We use FM-Darwin to read an input in TPTP format, a for-
mat for first-order theories widely used within the ATP com-
munity, to clausify it if needed, and to flatten the clauses at
hand. Additionally, FM-Darwin applies some input optimiza-
tions, such as renaming deep ground subterms and splitting,
to avoid the generation of flat clauses with many variables
[Baumgartner et al., 2009].

Given flat clauses, we further apply the transformations de-
scribed in Section 3.1 and 3.2 to generate an iASP program.
To this end, we implemented a compiler called fmc2iasp1,

1http://potassco.sourceforge.net/

written in Python. It outputs the rules that are specific to an
input theory, while the theory-independent rules in (5), (6),
and (9–11) are provided separately. This allows us to test
encoding variants, for instance, altering symmetry breaking,
without modifying fmc2iasp. Finally, we use iClingo to in-
crementally ground the obtained iASP program and to search
for answer sets representing finite models of the input theory.

5 Experiments

Our experiments consider the following systems: iClingo
(2.0.5), Clingo (2.0.5), Paradox (3.0), FM-Darwin (1.4.5),
and Mace4 (2009-11A). While Paradox and FM-Darwin are
based on the translational approach to FMC, Mace4 applies
the constraint solving approach. For iClingo and Clingo,
we used command line switch --heuristic=VSIDS, as
it improved search performance.2 All experiments were per-
formed on a 3.4GHz Intel Xeon machine running Linux, im-
posing 300 seconds as time and 2GB as memory limit.

FMC instances stem from the FNT division of CADE’s
2009 and 2010 ATP competitions. The instances in this di-
vision are satisfiable and suitable for evaluating FMC sys-
tems, among which Paradox won the first place in both years’
competitions. The considered problem domains are: comput-
ing theory (COM), common-sense reasoning (CSR), geogra-
phy (GEG), geometry (GEO), graph theory (GRA), groups
(GRP), homological algebra (HAL), knowledge representa-
tion (KRS), lattices (LAT), logic calculi (LCL), medicine
(MED), management (MGT), miscellaneous (MSC), natural
language processing (NLP), number theory (NUM), planning
(PLA), processes (PRO), rings in algebra (RNG), software
verification (SWV), syntactic (SYN).3

Table 1 and 2 show benchmark results for each of the prob-
lem domains. Column # displays how many instances of a
problem domain belong to the test suite. For each system
and problem domain, average run time in seconds is taken
over the solved instances; their number is given in parenthe-
ses.4 A dash in an entry means that a system could not solve
any instance of the corresponding problem domain within the
run time and memory limits. For each system, the last row
shows its average run time over all solved instances and pro-
vides their number in parentheses. The evaluation criteria in
CADE competitions are first number of solved instances and
then average run time as tie breaker.

In Table 1, we see that Mace4 and FM-Darwin solved 50
and 82 instances, respectively, out of the 99 instances in to-
tal. Paradox, the winner of the FNT division in CADE’s 2009
ATP competition, solved 92 instances in 6.05 seconds on av-
erage. While the version of our system not using symmetry
breaking (described in Section 3.4), denoted by iClingo (2),
solved two instances less, the one with symmetry breaking,
denoted by iClingo (1), also solved 92 instances. As it spent
only 2.29 seconds on average, according to the CADE crite-
ria, our system slightly outperformed Paradox. For assess-

2Note that Minisat, used internally by Paradox, also applies
VSIDS as decision heuristic [Eén and Sörensson, 2004].

3http://www.cs.miami.edu/˜tptp/
4Run time results of our system include the time for preprocess-

ing by FM-Darwin.

2629



Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4
CSR 1 2.87 (1) 2.30 (1) 6.26 (1) — 20.56 (1) —
GEG 1 — — — 230.36 (1) — —
GEO 12 0.08 (12) 0.09 (12) 0.11 (12) 0.08 (12) 0.09 (12) 0.04 (12)
GRA 2 3.44 (1) — 12.78 (1) 0.49 (1) — —
GRP 1 4.25 (1) 216.96 (1) 6.31 (1) 0.63 (1) — 0.28 (1)
HAL 2 2.52 (2) 2.46 (2) 2.94 (2) 0.67 (2) 11.84 (1) —
KRS 6 0.14 (6) 0.16 (6) 0.27 (6) 0.11 (6) 30.87 (6) 0.03 (4)
LAT 5 0.10 (5) 0.11 (5) 0.13 (5) 0.12 (5) 0.08 (5) 0.04 (5)
LCL 17 8.62 (17) 9.50 (17) 10.86 (17) 3.70 (17) 1.65 (17) 5.10 (8)
MGT 4 0.08 (4) 0.09 (4) 0.10 (4) 0.06 (4) 0.12 (4) 1.09 (4)
MSC 3 4.70 (2) 0.23 (1) 12.58 (2) 122.56 (2) 0.19 (1) —
NLP 9 1.66 (9) 2.03 (9) 3.17 (9) 0.24 (9) 0.26 (8) 22.07 (1)
NUM 1 0.19 (1) 0.24 (1) 0.28 (1) 0.27 (1) 0.11 (1) 201.51 (1)
PRO 9 1.09 (9) 9.03 (9) 2.02 (9) 0.34 (9) 0.77 (9) 31.53 (7)
SWV 8 0.15 (4) 0.14 (4) 0.20 (4) 0.13 (4) 44.84 (5) 0.04 (2)
SYN 18 0.59 (18) 0.57 (18) 0.72 (18) 0.40 (18) 3.84 (12) 0.68 (5)
Total 99 2.29 (92) 5.55 (90) 3.32 (92) 6.05 (92) 6.43 (82) 9.88 (50)

Table 1: Benchmark results for problems in the FNT division of CADE’s 2009 ATP competition.

Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4
COM 2 0.21 (2) 0.28 (2) 0.39 (2) 0.23 (2) 0.09 (2) 0.05 (2)
GEO 1 0.06 (1) 0.11 (1) 0.07 (1) 0.05 (1) 0.07 (1) 0.03 (1)
GRA 2 101.08 (1) — 207.62 (1) 8.21 (2) 15.56 (1) 207.37 (1)
GRP 1 0.08 (1) 0.12 (1) 0.12 (1) 0.03 (1) 0.04 (1) 0.03 (1)
HAL 1 2.48 (1) 2.37 (1) 2.73 (1) 0.33 (1) — —
KRS 1 0.09 (1) 0.11 (1) 0.12 (1) 0.05 (1) 0.05 (1) 0.03 (1)
LCL 52 5.43 (42) 5.25 (41) 4.57 (40) 3.81 (49) 6.22 (42) 8.08 (19)
MED 1 0.11 (1) 0.11 (1) 0.15 (1) 0.08 (1) 0.06 (1) 0.02 (1)
MSC 1 — — — — — —
NLP 52 41.59 (21) 38.29 (22) 35.49 (22) 0.21 (32) 15.85 (49) 3.71 (2)
NUM 9 0.17 (9) 0.19 (9) 0.24 (9) 0.19 (9) 0.10 (9) 22.61 (8)
PLA 4 70.41 (4) 0.27 (3) 0.52 (3) 0.20 (4) 0.23 (4) 0.26 (4)
RNG 2 0.19 (2) 0.26 (2) 0.29 (2) 0.23 (2) 0.20 (2) 287.29 (1)
SWV 2 — — — — — —
SYN 12 7.13 (12) 7.18 (12) 7.96 (12) 5.46 (12) 68.76 (9) —
Total 143 16.07 (98) 11.98 (96) 13.28 (96) 2.38 (117) 13.73 (122) 20.43 (41)

Table 2: Benchmark results for problems in the FNT division of CADE’s 2010 ATP competition, restricted to instances not
already used in 2009.

ing the advantages due to incremental grounding and solving,
we also ran Clingo, performing iterative deepening search
by successively grounding and solving our iASP encoding
for fixed domains of increasing size. The average run time
achieved with Clingo, 3.32 seconds, is substantially greater
than the one of iClingo (1); the gap becomes more apparent
the more domain elements (not shown in Table 1) are needed.

Although there are 200 instances in the FNT division of
CADE’s 2010 ATP competition, we only show 143 of them
in Table 2. (The 57 remaining instances were already used
in 2009.) Mace4 solved 41 of these 143 instances. Paradox,
the winner of the FNT division also in 2010, solved 117 in-
stances in 2.38 seconds on average. When considering all
200 instances used in 2010, Paradox solved 167 of them in
2.55 seconds on average, and FM-Darwin also solved 167 in-
stances, but in 12.99 seconds on average. In fact, FM-Darwin
solved the most instances in Table 2, 122 out of 143. Like
with the results shown in Table 1, the version of our sys-

tem with symmetry breaking, iClingo (1), solved two more
instances than the one without symmetry breaking, iClingo
(2). Furthermore, the advantages due to incremental ground-
ing and solving are more apparent in Table 2, viewing that
Clingo solved two instances less than iClingo (1), 96 com-
pared to 98. We however observe that iClingo cannot keep
step with Paradox and FM-Darwin on the instances in Ta-
ble 2; possible reasons are elaborated on next.

A general problem with the translational approach is that
flattening may increase the number of variables in a clause,
which can deteriorate grounding performance. We can ob-
serve this when comparing the results of FM-Darwin on the
NLP domain in Table 2 with those of iClingo and Para-
dox: FM-Darwin solved 17 instances more than Paradox
and 28 more than iClingo (1). Although FM-Darwin also
pursues a translational approach, it represents subproblems
by function-free first-order clauses and uses Darwin, not
relying on grounding [Baumgartner et al., 2009], to solve

2630



them. An instance of the SWV group (instance SWV484+2)
in Table 1 provides an extreme example for the infeasibil-
ity of grounding: it includes predicates of arity 34 and is
solved only by FM-Darwin. Furthermore, in comparison
to iClingo, sort inference [Claessen and Sörensson, 2003;
Baumgartner et al., 2009] promotes Paradox and FM-Darwin
on the instances of NLP in Table 2. This shows that there is
still potential to improve our iASP approach to FMC. On the
other hand, for the instances of CSR and MSC in Table 1, we
speculate that clausification and further preprocessing steps
of Paradox may be the cause for its deteriorated performance.
In fact, given the proximity of the solvers used internally by
iClingo and Paradox, major performance differences are most
likely due to discrepancies in grounding.

6 Discussion

We presented an efficient yet transparent approach to comput-
ing finite models of first-order theories by means of ASP. Our
approach takes advantage of an incremental extension of ASP
that allows us to consecutively search for models with given
domain size by incrementing the corresponding parameter in
an iASP encoding. Its declarative nature makes our approach
easily modifiable and leaves room for further improvements.
Still, our approach is rather competitive and has even a slight
edge on the winner of the FNT division of CADE’s 2009 ATP
competition on the respective benchmark collection.

Related works include [Sabuncu and Alpaslan, 2007],
where FMC systems were used for computing the answer sets
of tight5 logic programs in order to circumvent grounding. In
[Lierler and Lifschitz, 2008], a special class of first-order for-
mulas, called Effectively Propositional (EPR) formulas, was
addressed via ASP; application domains like planning and
bounded model checking have been encoded by EPR formu-
las and were successfully tackled by means of FMC [Pérez
and Voronkov, 2008; 2007].

Acknowledgments. This work was supported by the Ger-
man Science Foundation (DFG) under grants SCHA 550/8-
1/2. We are grateful to the anonymous referees of previously
submitted workshop, conference, and journal versions as well
as of this paper for their helpful comments.

References

[Baral, 2003] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving. Cambridge Univer-
sity Press, 2003.

[Baumgartner et al., 2009] P. Baumgartner, A. Fuchs, H. de
Nivelle, and C. Tinelli. Computing finite models by re-
duction to function-free clause logic. Journal of Applied
Logic, 7(1):58–74, 2009.

[Biere et al., 2009] A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors. Handbook of Satisfiability. IOS, 2009.

[Caferra et al., 2004] R. Caferra, A. Leitsch, and N. Peltier.
Automated Model Building. Kluwer, 2004.

5Tight programs are free of recursion through positive literals
(cf. [Baral, 2003]).

[Claessen and Sörensson, 2003] K. Claessen and
N. Sörensson. New techniques that improve MACE-
style finite model finding. Proceedings of the Workshop
on Model Computation (MODEL’03). 2003.

[Eén and Sörensson, 2004] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability
Testing (SAT’03), 502–518. Springer, 2004.

[Gebser et al., 2008] M. Gebser, R. Kaminski, B. Kaufmann,
M. Ostrowski, T. Schaub, and S. Thiele. Engineering an
incremental ASP solver. Proceedings of the 24th Inter-
national Conference on Logic Programming (ICLP’08),
190–205. Springer, 2008.

[Gebser et al., 2010] M. Gebser, O. Sabuncu, and T. Schaub.
An incremental answer set programming based system
for finite model computation. Proceedings of the 12th
European Conference on Logics in Artificial Intelligence
(JELIA’10), 169–181. Springer, 2010.

[Gebser et al., 2011] M. Gebser, R. Kaminski, A. König, and
T. Schaub. Advances in gringo series 3. Proceedings
of the 11th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’11), 345–
351. Springer, 2011.

[Lierler and Lifschitz, 2008] Y. Lierler and V. Lifschitz.
Logic programs vs. first-order formulas in textual infer-
ence. Unpublished draft, 2008.

[McCune, 1994] W. McCune. A Davis-Putnam program and
its application to finite first-order model search: Quasi-
group existence problems. Technical Report ANL/MCS-
TM-194, Argonne National Laboratory, 1994.

[Pérez and Voronkov, 2007] J. Navarro Pérez and
A. Voronkov. Encodings of bounded LTL model
checking in effectively propositional logic. Proceedings
of the 21st International Conference on Automated
Deduction (CADE’07), 346–361. Springer, 2007.

[Pérez and Voronkov, 2008] J. Navarro Pérez and
A. Voronkov. Planning with effectively proposi-
tional logic. Volume in Memoriam of Harald Ganzinger.
Springer, To appear.

[Robinson and Voronkov, 2001] J. Robinson and
A. Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier and MIT Press, 2001.

[Sabuncu and Alpaslan, 2007] O. Sabuncu and F. Alpaslan.
Computing answer sets using model generation theorem
provers. Proceedings of the 4th International Workshop
on Answer Set Programming (ASP’07), 225–240. 2007.

[Simons et al., 2002] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[Tammet, 2003] T. Tammet. Finite model building: Im-
provements and comparisons. Proceedings of the Work-
shop on Model Computation (MODEL’03). 2003.

[Zhang, 1996] J. Zhang. Constructing finite algebras with
FALCON. Journal of Automated Reasoning, 17(1):1–22,
1996.

2631




