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Abstract

We propose a nonmonotonic extension of low com-
plexity Description Logics EL⊥ and DL-Litecore
for reasoning about typicality and defeasible prop-
erties. The resulting logics are called EL⊥Tmin

and DL-LitecTmin. Concerning DL-LitecTmin,
we prove that entailment is in Πp

2. With regard to
EL⊥Tmin, we first show that entailment remains
EXPTIME-hard. Next we consider the known frag-
ment of Left Local EL⊥Tmin and we prove that
the complexity of entailment drops to Πp

2.

1 Introduction

Nonmonotonic extensions of Description Logics (DLs) have
been actively investigated since the early 90s, [Straccia, 1993;
Bonatti et al., 2006; Baader and Hollunder, 1995; Bonatti et
al., 2009; Donini et al., 2002; Giordano et al., 2009b; 2009a;
2008; Casini and Straccia, 2010]. The reason is that DLs are
used to represent classes and their properties, so that a non-
monotonic mechanism is wished to express defeasible inher-
itance of prototypical properties. A simple but powerful non-
monotonic extension of DL is proposed in [Giordano et al.,
2009b; 2009a; 2008]: in this approach “typical” or “normal”
properties can be directly specified by means of a “typical-
ity” operator T enriching the underlying DL; the tipicality
operator T is essentially characterised by the core properties
of nonmonotonic reasoning axiomatized by preferential logic
[Kraus et al., 1990]. In ALC + T [Giordano et al., 2009b]
and EL⊥T [Giordano et al., 2009a], one can consistently ex-
press defeasible inclusions and exceptions such as: typical
students do not pay taxes, but working students do typically
pay taxes, but working student having children normally do
not: T(Student) � ¬TaxPayer ; T(Student �Worker) �
TaxPayer ; T(Student � Worker � ∃HasChild .�) �
¬TaxPayer (for the formalization in EL⊥T see Example
2.6). Although the operator T is nonmonotonic in itself,
the logics ALC + T and EL⊥T are monotonic. As a con-
sequence, unless a KB contains explicit assumptions about
typicality of individuals (e.g. that john is a typical student),
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there is no way of inferring defeasible properties of them
(e.g. that john does not pay taxes). In [Giordano et al.,
2008], a non monotonic extension of ALC + T based on a
minimal models semantics is proposed. The resulting logic,
called ALC +Tmin, supports typicality assumptions, so that
if one knows that john is a student, one can nonmonotoni-
cally assume that he is also a typical student and therefore
that he does not pay taxes. As an example, for a TBox spec-
ified by the inclusions above, in ALC + Tmin the follow-
ing inference holds: TBox ∪ {Student(john)} |=ALC+Tmin

¬TaxPayer(john).
Similarly to other nonmonotonic DLs, adding the typical-

ity operator with its minimal-model semantics to a standard
DL, such as ALC, leads to a very high complexity (namely
query entailment in the resulting logic is in CO-NEXPNP
[Giordano et al., 2008]). This fact may motivate the study
of nonmonotonic extensions of low complexity DLs such as
DL-Litecore [Calvanese et al., 2007] and EL⊥ of the EL fam-
ily [Baader et al., 2005] which are nonetheless well-suited
for encoding large knowledge bases (KBs). In this paper,
we hence consider the extensions of the low complexity log-
ics DL-Litecore and EL⊥ with the typicality operator based
on the minimal model semantics introduced in [Giordano et
al., 2008]. We study the complexity of the resulting logics
EL⊥Tmin and DL-LitecTmin. For EL⊥, it turns out that its
extension EL⊥Tmin is unfortunately EXPTIME-hard. This
result is analogous to the one for circumscribed EL⊥ KBs
[Bonatti et al., 2009]. However, the complexity decreases to
Πp

2 for the fragment of Left Local EL⊥ KBs, corresponding
to the homonymous fragment in [Bonatti et al., 2009]. We
obtain the same complexity upper bound for DL-LitecTmin.

2 The typicality operator T and the Logic

EL⊥Tmin

Before describing EL⊥Tmin, let us briefly recall the under-
lying monotonic logic EL⊥T [Giordano et al., 2009a], ob-
tained by adding to EL⊥ the typicality operator T. The intu-
itive idea is that T(C) selects the typical instances of a con-
cept C. In EL⊥T we can therefore distinguish between the
properties that hold for all instances of concept C (C � D),
and those that only hold for the normal or typical instances of
C (T(C) � D).
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Formally, the EL⊥T language is defined as follows.

Definition 2.1 We consider an alphabet of concept names C,
of role names R, and of individuals O. Given A ∈ C and
r ∈ R, we define

C := A | � | ⊥ | C � C
CR := C | CR � CR | ∃r.C
CL := CR | T(C)

A KB is a pair (TBox, ABox). TBox contains a finite set of
concept inclusions CL � CR. ABox contains assertions of
the form CL(a) and r(a, b), where a, b ∈ O.

The semantics of EL⊥T [Giordano et al., 2009a] is de-
fined by enriching ordinary models of EL⊥ by a preference
relation < on the domain, whose intuitive meaning is to com-
pare the “typicality” of individuals: x < y, means that x is
more typical than y. Typical members of a concept C, that is
members of T(C), are the members x of C that are minimal
with respect to this preference relation.

Definition 2.2 (Semantics of T) A model M is any struc-
ture 〈Δ, <, I〉 where Δ is the domain; < is an irreflexive
and transitive relation over Δ that satisfies the following
Smoothness Condition: for all S ⊆ Δ, for all x ∈ S, ei-
ther x ∈ Min<(S) or ∃y ∈ Min<(S) such that y < x,
where Min<(S) = {u : u ∈ S and �z ∈ S s.t. z < u}.
Furthermore, < is multilinear: if u < z and v < z, then ei-
ther u = v or u < v or v < u. I is the extension function
that maps each concept C to CI ⊆ Δ, and each role r to
rI ⊆ ΔI × ΔI . For concepts of EL⊥, CI is defined in the
usual way. For the T operator: (T(C))I = Min<(C

I).

Definition 2.3 (Model satisfying a Knowledge Base)
Given a model M, I can be extended so that it assigns to
each individual a of O a distinct element aI of the domain
Δ. M satisfies a KB (TBox,ABox), if it satisfies both its TBox
and its ABox, where:

• M satisfies TBox if for all inclusions C � D in TBox,
for all elements x ∈ Δ, if x ∈ CI , then x ∈ DI .

• M satisfies ABox if: (i) for all C(a) in ABox, aI ∈ CI ,
(ii) for all aRb in ABox, (aI , bI) ∈ rI .

The operator T [Giordano et al., 2009b] is characterized by a
set of postulates that are essentially a reformulation of KLM
[Kraus et al., 1990] axioms of preferential logic P. Roughly
speaking, the assertion T(C) � D corresponds to the condi-
tional C |∼ D of P. T has therefore all the “core” properties
of nonmonotonic reasoning as it is axiomatised by P.

The semantics of the typicality operator can be specified
by modal logic. The interpretation of T can be split into two
parts: for any x of the domain Δ, x ∈ (T(C))I just in case
(i) x ∈ CI , and (ii) there is no y ∈ CI such that y < x.
Condition (ii) can be represented by means of an additional
modality �, whose semantics is given by the preference re-
lation < interpreted as an accessibility relation. Observe that
by the Smoothness Condition, � has the properties of Gödel-
Löb modal logic of provability G.

The interpretation of � in M is as follows:

(�C)I = {x ∈ Δ | for every y ∈ Δ, if y < x then y ∈ CI}.

We immediatly get that x ∈ (T(C))I iff x ∈ (C � �¬C)I .
From now on, we consider T(C) as an abbreviation for C �
�¬C. Finally, we recall that the problem of entailment in
EL⊥T is in CO-NP (as shown in [Giordano et al., 2009a]).

The main limit of EL⊥T is that it is monotonic. Even if the
typicality operator T itself is nonmonotonic (i.e. T(C) � E

does not imply T(C � D) � E), the logic EL⊥T is mono-
tonic: what is inferred from KB can still be inferred from any
KB’ with KB ⊆ KB’. In order to perform nonmonotonic in-
ferences, as done in [Giordano et al., 2008], we strengthen
the semantics of EL⊥T by restricting entailment to a class
of minimal (or preferred) models. We call the new logic
EL⊥Tmin. Intuitively, the idea is to restrict our considera-
tion to models that minimize the non typical instances of a
concept. The preference relation on models (with the same
domain) is defined by comparing individuals in the interpre-
tation of modal (or more precisely �-ed) formulas.

Given a KB, we consider a finite set L� of concepts: these
are the concepts whose non typical instances we want to mini-
mize. We assume that the set L� contains at least all concepts
C such that T(C) occurs in the KB or in the query α. A query
α is either an assertion C(a) or an inclusion relation C � D.
We have that x is a typical instance of C if x ∈ (C ��¬C)I .
Since we do not want to change the extension of concept C by
minimization, we minimize only objects not satisfying �¬C
for C ∈ L�. Given a model M = 〈Δ, <, I〉, we first define:
M�−

L� = {(x,¬�¬C) | x 
∈ (�¬C)I , with x ∈ Δ, C ∈ L�}.
Definition 2.4 (Preferred and minimal models) Given a
model M = 〈Δ <, I〉 of a knowledge base KB, and a model
M′ = 〈Δ′, <′, I ′〉 of KB, we say that M is preferred to M′
with respect to L�, and we write M <L� M′, if (i) Δ = Δ′

and (ii) M�−
L� ⊂ M′�−

L� . A model M is a minimal model for
KB (with respect to L�) if it is a model of KB and there is no
other model M′ of KB such that M′ <L� M.

We can now define entailment in EL⊥Tmin. Let us first
say that a query α holds in a model M = 〈Δ <, I〉 of a KB
(Definition 2.3) whenever: (i) α = C � D, and for all x ∈ Δ,
if x ∈ CI , then x ∈ DI , or (ii) α = C(a), and aI ∈ CI .

Definition 2.5 (Minimal Entailment in EL⊥Tmin) A
query α is minimally entailed in EL⊥Tmin by a knowledge
base KB with respect to L� if it holds in all models of KB that
are minimal with respect to L�. We write KB |=EL⊥Tmin

α.
Example 2.6 The KB of the Introduction can be reformu-
lated as follows in EL⊥T: TaxPayer �NotTaxPayer � ⊥;
Parent � ∃HasChild .�; ∃HasChild .� � Parent ;
T(Student) � NotTaxPayer ; T(Student � Worker) �
TaxPayer ; T(Student � Worker � Parent) �
NotTaxPayer . Let L� = {Student ,Student �
Worker ,Student � Worker � Parent}. Then TBox
∪ {Student(john)} |=EL⊥Tmin

NotTaxPayer(john),
since johnI ∈ (Student � �¬Student)I for all minimal
models M = 〈Δ <, I〉 of the KB. Similarly we obtain TBox
∪ {∃HasChild .(Student �Worker)(jack)} |=EL⊥Tmin

∃HasChild .TaxPayer(jack). The latter shows that minimal
entailment applies to implict individuals as well, without
any ad-hoc mechanism.
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Observe that minimal entailment is nonmonotonic, since,
for KB ⊂ KB’, the minimal models of KB’ are not necessarily
minimal models of KB.

3 Complexity of EL⊥Tmin

In this section we analyze the complexity of EL⊥Tmin. We
consider the complexity of minimal entailment of a query as
defined above. First we show that, contrary to the mere
addition of the operator T to EL⊥, the adoption of the non-
monotonic semantics drastically worsens the complexity of
EL⊥Tmin making it EXPTIME hard. Next we identify a syn-
tactic restriction that allows one to obtain a reasonable com-
plexity (laying in the second level of the polynomial hierar-
chy), comparable to the one of other nonmonotonic mecha-
nisms for EL⊥, such as circumscription.

3.1 An EXPTIME lower bound for EL⊥Tmin

We prove here that EL⊥Tmin is EXPTIME hard. The proof
is based on the reduction of the problem of TBox satisfiabil-
ity in EL¬A to the complement of EL⊥Tmin subsumption.
The logic EL¬A is just EL⊥ extended by the complement of
concept names and the satisfiability problem for it is known
to be EXPTIME-hard [Baader et al., 2005].

Theorem 3.1 Entailment in EL⊥Tmin is EXPTIME-hard.

Proof. Let T be a TBox in EL¬A. We define a KB=(T ′,A′) in
EL⊥Tmin by introducing, for each concept name A in T , the
fresh names: A (for representing the negation of A, ¬A), UA

(for representing the fact that A has an undefined truth value),
NA (meaning normal A), N¬A (meaning normal ¬A), NUA

(meaning normal UA). Also, we introduce the new concept
names D (for defining a subset of the domain), E and U and
the new concept role R.

We translate each concept C into C∗ as follows: (i) C∗ =
C, if C is a concept name; (ii) C∗ = A, if C = ¬A; (iii)
C∗ = D � ∃r.(C∗

1 � D), if C = ∃r.C1 (iv) C∗ = C∗
1 �

C∗
2 if C = C1 � C2. For all the inclusions C1 � C2 ∈

T the translated TBox T ′ contains the inclusion C∗
1 � C∗

2 .
The translated TBox T ′, contains, in addition, the following
inclusions (for all concept names A):
D � NA, D � NA, D � NUA

T(NA) � A T(NA) � A T(NUA
) � UA

A �A � ⊥ A � UA � ⊥ UA �A � ⊥
D � E D �T(E) � ∃R.(D � UA) D � UA � U

A′ contains the assertion D(a), for a new individual name a.
A D element of the domain is a normal A, a normal A and

a normal UA element (first line) and it can be (in mutual ex-
clusion) either a typical normal A element or a typical normal
A element or a typical normal UA element (second and third
line). Thus any D element, provides a truth value (true, false
or undefined) to each concept name A. The last line says
that each D is an E and the typical E are in the relation R
with D element for which UA is true. Observe that, if there
is a D � UA element in the domain, there is no reason why
a D element should not be assumed to be a typical E ele-
ment (and in the preferred models, that D element would be
in the relation R with a D � UA element, unless there are no

D � UA elements in the model). Last subsumption says that
U must hold for those D elements which make some concept
name A undefined. Finally, the assertion D(a) guarantees the
existence of at least a D element in the models of KB. Any
preferred model of EL⊥Tmin, in which there are no D ele-
ments with undefined concept names ((D � UA)

I = ∅), can
be mapped to a model in EL¬A, by removing all the relation
< and by restricting the domain of the model to the set of
elements in which D holds. If the resulting model does not
contain any undefined element (i.e. any element in which UA

holds for some A), then that model is a (two valued) model
of T . Hence, we can verify that T is satisfiable in EL¬A, by
verifying that KB has a minimal model M in EL⊥Tmin that
does not contain D � UA elements. This is true if there is a
minimal model that does not contain U elements, which can
be tested by verifying that KB 
|=EL⊥Tmin

D � ∃R.U , with
L� = {NA, NA, NUA

, E}. This condition holds whenever
there is a model M = 〈Δ, <, I〉 of KB in EL⊥Tmin and an
element y in its domain such that: y ∈ DI and y 
∈ (∃R.U)I .
This means that there is no D � UA element in the model
M. Then, we can conclude that entailment in EL⊥Tmin is
EXPTIME-hard. �
The previous result corresponds to an analogous result for
circumscribed KBs [Bonatti et al., 2009]. In order to lower
the complexity of minimal entailment in EL⊥Tmin, we put
the following syntactic restrictions on the KB.

3.2 Left Local Knowledge Bases

In this section, we consider a syntactical restriction on knowl-
edge bases called Left Local KBs. This restriction is similar
to the one introduced in [Bonatti et al., 2009].

Definition 3.2 (Left Local knowledge base) A Left Local
KB only contains subsumptions CLL

L � CR, where C and
CR are as in Definition 2.1 and:

CLL
L := C | CLL

L � CLL
L | ∃r.� | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 2.6 is Left Local.
We provide an upper bound for the complexity of Left Lo-

cal KBs by a small model theorem. Intuitively, what allows
us to keep the size of the small model polynomial is that we
reuse the same world to verify the same existential concept
throughout the model.

We write KB |=small
EL⊥Tmin

α to say that α holds in all min-
imal models of the KB whose size is polynomially bounded
by the size of KB.

Let KB=(TBox,ABox) be a Left Local KB, and suppose
KB 
|=EL⊥Tmin

α. We want to show that KB 
|=small
EL⊥Tmin

α

(this is one half of Theorem 3.11).
Let M = 〈Δ, <, I〉 be a minimal model of KB in which

α does not hold. Let x ∈ Δ be an element falsifying α.
Since α can be an existential formula, x is the only world for
which we have to preserve the truth value of all existential
formulas (also negative) in the small model. For this reason
we consider x first. The small model M′ is built as follows.

1. Δ0 := Unres := {x} ∪ {aI ∈ Δ | a occurs in ABox }
2. for each ∃r.C occurring in KB s.t. x ∈ (∃r.C)I do
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3. choose w ∈ Δ s.t. (x,w) ∈ rI and w ∈ CI

4. Δ0 := Δ0 ∪ {w}
5. add (x,w) to rI

′

6. while Unres 
= ∅ do
7. extract one y from Unres
8. for each ∃r.C in KB s.t. y ∈ (∃r.C)I , y 
= x do

9. if ∃w ∈ Δ0 s.t. w ∈ CI′ then
10. add (y, w) to rI

′

11. else
12. choose w ∈ Δ s.t. (y, w) ∈ rI and w ∈ CI

13. Δ0 := Δ0 ∪ {w}
14 add (y, w) to rI

′

15. Unres:=Unres ∪ {w}
16. for each yi ∈ Δ such that yi < y do
17. Δ0 := Δ0 ∪ {yi}
18. Unres:=Unres ∪ {yi}

We then define M′ in the following way.
Definition 3.3 The model M′ = 〈Δ′, <′, I ′〉 is as follows:
(i) Δ′ = Δ0; (ii) we define <′ by adding u <′ v if u < v,
for each u, v ∈ Δ′; (iii) the extension function I ′ is defined
as follows: - for all atomic concepts C ∈ C, for all elements
in Δ′, we define u ∈ CI′ if u ∈ CI ; - for all roles r ∈ R, rI

′

is as computed by the above algorithm; (iv) I ′ is extended so
that it assigns aI to each individual a in the ABox .

Lemma 3.4 The relation <′ is irreflexive, transitive, multi-
linear and satisfies the Smoothness Condition.

Proof. This is so because these properties hold in M for all
descending chains of <. Here, we have imported some of the
chains and we have added no new relations to <′ not belong-
ing to <. �

Lemma 3.5 Given a concept C with form CLL
L of Definition

3.2, for all y ∈ Δ′, y ∈ CI′ iff y ∈ CI .

Proof. By induction on the complexity of C. To save space,
we only present the two most interesting cases. Let C be
∃r.�. If y ∈ (∃r.�)I , then at step 5 or 10 or 14 (y, z)

has been inserted to rI
′
, and y ∈ (∃r.�)I

′
. For the other

direction, if (y ∈ ∃r.�)I
′
, then there must be z such that

(y, z) has been added to rI
′

in step 5 or 10 or 14 for a given
y ∈ (∃r.C)I . Hence y ∈ (∃r.�)I also in M.
Let C be T(C1), and y ∈ (T(C1))

I . Then y ∈ CI
1 and for all

z < y, z 
∈ CI
1 , i.e. y ∈ (�¬C1)

I . By inductive hypothesis,
y ∈ CI′

1 . Furthermore, by definition of <′, for all z ∈ Δ′, if
z <′ y, then z < y, and by inductive hypothesis, z 
∈ CI′

1 ,
hence y ∈ (�¬C1)

I′ . Hence, y ∈ (T(C1))
I′ . On the other

hand, if y ∈ (T(C))I
′
, we can reason analogously: from y ∈

CI′
1 we conclude that y ∈ CI

1 , and from y ∈ (�¬C1)
I′ , we

conclude that y ∈ (�¬C1)
I , i.e., for all z < y, z 
∈ CI

1 (since
for all z < y, z ∈ Δ0 and z <′ y). Hence, y ∈ (T(C1))

I . �
Lemma 3.6 Given a concept C with form CR, for all y ∈ Δ′,
if y ∈ CI then y ∈ CI′ .

Proof. Let C be ∃r.C1. If y ∈ (∃r.C1)
I , by construction,

(y, w) ∈ rI
′

for some w ∈ CI
1 . By Lemma 3.5, w ∈ CI′

1 . It
follows that y ∈ (∃r.C1)

I′ . �

Lemma 3.7 Given any concept C, x ∈ CI′ iff x ∈ CI .

Proof. With respect to Lemma 3.5 we also consider here ex-
istential concepts, for which we can prove the converse of
Lemma 3.6, namely that if x ∈ (∃r.C1)

I′ , then x ∈ (∃r.C1)
I .

This follows from the fact that for the starting individual x,
for all w such that (x,w) ∈ rI

′
, (x,w) ∈ rI , and by Lemma

3.5, if w ∈ C1
I′ , then w ∈ C1

I . �
Lemma 3.8 M′ is a model of KB. Furthermore, α does not
hold in M′.
Proof. Assertions in the ABox hold in M′ by Lemma 3.5
or Lemma 3.6. Concerning the TBox, consider C � D. By
definition of Left Local, for C Lemma 3.5 holds. Hence, if
y ∈ CI′ , also y ∈ CI , hence y ∈ DI (since M is a model
of KB) and, by Lemma 3.6, y ∈ DI′ . Last, by hypothesis
x falsifies α in M, i.e., if α = C � D, then x ∈ CI and
x 
∈ DI ; if α = C(a), x = aI and x 
∈ CI . From Lemma 3.7
in M′, x ∈ CI′ but x 
∈ DI′ , in the first case, and x 
∈ CI′ ,
in the second case. In both cases, α does not hold in M′. �
Lemma 3.9 M′ has a polynomial size in the size of KB.

Proof. First of all, since M is minimal, each descending <-
chain must be polynomial in size. Indeed, for each w′ < w
in the chain there must be a concept C (occurring in KB)
such that w 
∈ (�¬C)I and w′ ∈ (�¬C)I (it can be shown
that if it was not so, we could build a model preferred to M,
which, hence, would not be minimal; this model would be
obtained by eliminating w from the <-chain and by putting
w in the extension of the same concepts to which belongs a
given individual with no preferred element, w.r.t. <). Since
the number of concepts occurring in KB is polynomial, each
chain is polynomial in size. By construction, this also holds in
M′. Furthermore, in M′ the number of chains inserted cor-
responds to the number of distinct existential concepts occur-
ring in KB, whose number is polynomial. Hence the overall
size of M′ is polynomial in the size of KB. �
Lemma 3.10 M′ is a minimal model for KB.

Proof. We have already shown in Lemma 3.5, when consid-
ering the case of T(C1), that for all w in Δ′, w 
∈ (�¬C1)

I′

iff w 
∈ (�¬C1)
I . Hence, M′�−

L� ⊆ M�−
L� (we use ⊆ in-

stead of = because the domain of M′ is smaller than the
domain of M). Suppose now M′ was not minimal. There
would be an M′′ whose domain is the same than M′’s and
M′′�−

L� ⊂ M′�−
L� . However, in this case we can build an

M′′′ with the same domain as M such that M′′′�−
L� ⊂ M�−

L� ,
thus proving that M is not minimal, against the hypothesis.
M′′′ can be built from M′′ by reintroducing the domain ele-
ments of M that do not belong to M′′. We chose an element
y in M′′ with no y1 <′′ y (by the Smoothness Condition
this element exists) and we let I ′′′ be the extension of I ′′
that handles the added elements by putting them in the ex-
tension of exactly the same concepts to which y belongs in
M′′. Since y satisfies all positive boxed formulas in M′′,
M′′′�−

L� = M′′�−
L� ⊂ M′�−

L� . However, as stated above,

M′�−
L� ⊆ M�−

L� , hence we conclude that M′′′�−
L� ⊂ M�−

L� ,
and M would not be minimal, contradiction. �
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Theorem 3.11 (Small model theorem) KB |=EL⊥Tmin
α if

and only if KB |=small
EL⊥Tmin

α.

Proof. If KB 
|=EL⊥Tmin
α, by the lemmas above we

can build a small minimal model of KB that does not sat-
isfy α, hence KB 
|=small

EL⊥Tmin
α. On the other hand, if KB

|=EL⊥Tmin
α in all minimal models of KB, this also holds

for small minimal models, hence KB |=small
EL⊥Tmin

α. �
Given Theorem 3.11 above, we can conclude that, when eval-
uating entailment, we can restrict our consideration to small
models, namely, to polynomial multilinear models of the KB.
This provides an upper bound on the complexity of deter-
mining if KB |=EL⊥Tmin

α. Indeed, by Theorem 3.11, this
amounts to considering whether KB |=small

EL⊥Tmin
α. We con-

sider the complementary problem of KB 
|=small
EL⊥Tmin

α. This
problem can be solved by nondeterministically generating a
model M whose size is polynomial in the size of KB (NP),
and then by calling an NP oracle which verifies that M is a
minimal model of KB that does not satisfy α. To see this,
the verification that M is not a minimal model of the KB can
be done by an NP algorithm which nondeterministically gen-
erates a new model M′ of KB (whose size is polynomial in
the size of M) and checks whether it is preferred to M (this
can be checked in polynomial time in the size of M). Hence,
the problem of verifying that KB 
|=EL⊥Tmin

α is in Σp
2, and

that of verifying KB |=EL⊥Tmin
α is in Πp

2. We can therefore
conclude that:

Theorem 3.12 (Complexity for EL⊥Tmin Left Local KBs)
If KB is Left Local, the problem of deciding whether KB
|=EL⊥Tmin

α is in Πp
2.

In [Giordano et al., 2011] we have introduced a tableau
calculus for deciding whether a query α is minimally entailed
from a Left Local KB in the logic EL⊥Tmin. The calculus is
a variant of the calculus TABALC+T

min
[Giordano et al., 2008]

for ALC+Tmin, and it is essentially obtained by: (i) modify-
ing the application of the rule (∃+) in a way such that, when
applied to a formula u : ∃R.C, it introduces a new label only
when a label xC for C does not belong to the current branch.
Otherwise, if xC has been already introduced, then u

R−→ xC

is added to the conclusion of the rule. In this way, in a given
branch, the rule (∃+) only introduces a new label xC for each
concept C occurring in the inital KB in some ∃R.C; (ii) mod-
ifying the rule for negated boxed formulas ¬�¬C according
to the multilinear models semantics of EL⊥Tmin.

The calculus performs a two-phase computation in order to
build an open branch representing a minimal model satisfy-
ing KB ∪ {¬α}. In the first phase, the tableau calculus sim-
ply verifies whether KB ∪ {¬α} is satisfiable by an EL⊥T
model, building candidate models. In the second phase the
calculus checks whether the candidate models found in the
first phase are minimal models of KB, i.e. for each open
branch of the first phase, the second phase tries to build a
“smaller” model, i.e. a model whose individuals satisfy less
formulas ¬�¬C than the corresponding candidate model.

The resulting calculus is sound, complete, terminating, and
its complexity matches the results of Theorem 3.12.

4 The Logic DL-LitecTmin

In this section we present the extension of the low complexity
description logic DL-Litecore [Calvanese et al., 2007] with
the T operator. We call DL-LitecTmin the resulting logic.

The language of DL-LitecTmin is defined as follows.

Definition 4.1 We consider an alphabet of concept names C,
of role names R, and of individuals O. Given A ∈ C and
r ∈ R, we define

CL := A | ∃R.� | T(A) R := r | r−
CR := A | ¬A | ∃R.� | ¬∃R.�

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains
a finite set of concept inclusions of the form CL � CR. ABox
contains assertions of the form C(a) and r(a, b), where C is
a concept CL or CR, r ∈ R, and a, b ∈ O.

As for EL⊥Tmin, a model M for DL-LitecTmin is any
structure 〈Δ, <, I〉, defined as in Definition 2.2, where I is
extended to take care of inverse roles: given r ∈ R, (r−)I =
{(a, b) | (b, a) ∈ rI}.

For DL-LitecTmin KBs we can make a small model con-
struction that is similar to that one for Left Local KBs. As
a difference, in this case, we exploit the fact the, for each
atomic role r, the same element of the domain can be used to
satisfy all occurrences of the existential ∃r.�. Also, the same
element of the domain can be used to satisfy all occurrences
of the existential ∃r−.�. This will guarantee that existential
concepts (as well as all other concepts) have the same valua-
tion in M′ and in M on the common part of the domain. In
the construction, we consider the two cases for ∃r.� and for
∃r−.� separately.

Let M = 〈Δ, <, I〉 be a minimal model of KB in which α
does not hold, and let x be the element of the domain falsify-
ing α. The small model M′ is built as follows:

1. Δ0 := Unres := {x} ∪ {aI ∈ Δ | a occurs in ABox }
2. while Unres 
= ∅ do

3. extract one y from Unres
4. for each ∃r.� occurring in KB s.t. y ∈ (∃r.�)I do

5. if ∃z, w ∈ Δ0 s.t. (z, w) ∈ rI
′

then

6. add (y, w) to rI
′

7. else

8. choose w ∈ Δ s.t. (y, w) ∈ rI

9. Δ0 := Δ0 ∪ {w}
10 add (y, w) to rI

′

11. Unres:=Unres ∪ {w}
12. for each ∃r−.� in KB s.t. y ∈ (∃r−.�)I do

13. if ∃z, w ∈ Δ0 s.t. (w, z) ∈ rI
′

then

14. add (w, y) to rI
′

15. else

16. choose w ∈ Δ s.t. (w, y) ∈ rI

17. Δ0 := Δ0 ∪ {w}
18 add (w, y) to rI

′

19. Unres:=Unres ∪ {w}
20. for each yi ∈ Δ such that yi < y do

21. Δ0 := Δ0 ∪ {yi}
22. Unres:=Unres ∪ {yi}
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We define M′ in the same way as in Definition 3.3. By rea-
soning similarly to what done for Left Local KBs, we can
now show the following lemmas.
Lemma 4.2 The relation <′ is irreflexive, transitive, multi-
linear and satisfies the Smoothness Condition.
Lemma 4.3 For all DL-LitecT concepts C occurring in the
KB (or in the query), for all y ∈ Δ′, y ∈ CI′ iff y ∈ CI .
Proof. By induction on the structure of C. If C is a concept
name or a boolean combination of concept names, the proof
follows straightforwardly from the definition of I ′.

Let us consider the case for C is ∃R.�. We use the follow-
ing facts concerning the construction of model M′: (1) when
(y, w) is added to rI

′
in steps 6 and 10, it must be the case

that (z, w) ∈ rI , for some z ∈ Δ, i.e. that w ∈ (∃r−.�)I . (2)
when (w, y) is added to rI

′
in steps 14 and 18, it must be the

case that (w, z) ∈ rI , for some z ∈ Δ, i.e. that w ∈ (∃r.�)I .
Let y ∈ (∃r.�)I . As y ∈ Δ′, y must have been selected

at step 3. Then, in steps 6 or 10, (y, w) is added to rI
′

for
some w in Δ0. Hence, y ∈ (∃r.�)I

′
. Let y ∈ (∃r.�)I

′
.

Then there is a w ∈ Δ′ such that (y, w) ∈ rI
′
. There are two

cases. In the first one, (y, w) has been added to rI
′

in steps 6
or 10, since the condition of the for loop in step 4 holds. In
this case, y ∈ (∃r.�)I . In the second case, (y, w) has been
added to rI

′
in steps 14 or 18. By fact (2) above, there must

be some z ∈ Δ such that (y, z) ∈ rI . Hence, y ∈ (∃r.�)I .
Let y ∈ (∃r−.�)I . As y ∈ Δ′, y must have been selected

at step 3. Then, in steps 14 or 18, (w, y) is added to rI
′

for
some w in Δ0. Hence, y ∈ (∃r−.�)I

′
. Let y ∈ (∃r−.�)I

′
.

Then there is a w ∈ Δ′ such that (w, y) ∈ rI
′
. There are two

cases. In the first one, (w, y) has been added to rI
′

in steps 14
or 18, since the condition of the for loop in step 12 holds. In
this case, y ∈ (∃r−.�)I . In the second case, (w, y) has been
added to rI

′
in steps 6 or 10. By fact (1) above, there must be

some z ∈ Δ such that (z, y) ∈ rI . Hence, y ∈ (∃r−.�)I . �
Notice that, due to the differences in the treatment of ex-

istential concepts here and in the case of Left Local KBs,
Lemma 4.3 is stronger than Lemmas 3.5, 3.6, and 3.7.

By Lemma 4.3, and by reasoning as for Left Local KBs,
we can prove the following lemma and theorem:
Lemma 4.4 M′ is a minimal model of KB whose size is poly-
nomial in the size of KB.
Theorem 4.5 (Small model theorem) KB |=DL-LitecTmin

α if and only if KB |=small
DL-LitecTmin

α.

By the same argument used for Left Local KBs, we can prove:
Theorem 4.6 (Complexity for DL-LitecTmin) The prob-
lem of deciding whether KB |=DL-LitecTmin

α is in
Πp

2.

5 Conclusions

We have proposed a nonmonotonic extension of low com-
plexity DLs EL⊥ and DL-Litecore for reasoning about typi-
cality and defeasible properties. We have shown that entail-
ment is EXPTIME-hard for EL⊥Tmin, whereas it drops to

Πp
2 when considering the Left Local Fragment of EL⊥Tmin.

The same complexity has been found for DL-LitecTmin.
These results match the complexity upper bounds of the same
fragments in circumscribed KBs [Bonatti et al., 2009]. In
[Bonatti et al., 2010] a fragment of EL⊥ has been identified
for which the complexity of circumscribed KBs is polyno-
mial. In future work we shall investigate the complexity of
minimal entailment for such fragment extended with T.
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