skip to main content
10.1145/3345312.3345496acmotherconferencesArticle/Chapter ViewAbstractPublication PagesnanocomConference Proceedingsconference-collections
research-article
Public Access

Graphene epsilon-near-zero plasmonic crystals

Authors Info & Claims
Published:25 September 2019Publication History

ABSTRACT

Plasmonic crystals are a class of optical metamaterials that consist of engineered structures at the sub-wavelength scale. They exhibit optical properties that are not found under normal circumstances in nature, such as negative-refractive-index and epsilon-near-zero (ENZ) behavior. Graphene-based plasmonic crystals present linear, elliptical, or hyperbolic dispersion relations that exhibit ENZ behavior, normal or negative-index diffraction. The optical properties can be dynamically tuned by controlling the operating frequency and the doping level of graphene. We propose a construction approach to expand the frequency range of the ENZ behavior. We demonstrate how the combination of a host material with an optical Lorentzian response in combination with a graphene conductivity that follows a Drude model leads to an ENZ condition spanning a large frequency range.

References

  1. M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd. 2018. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nature Photonics 12 (2018), 79--83.Google ScholarGoogle ScholarCross RefCross Ref
  2. Andrea Alù, Mário G. Silveirinha, Alessandro Salandrino, and Nader Engheta. 2007. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B 75 (Apr 2007), 155410. Issue 15. https://doi.org/10.1103/PhysRevB.75.155410Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S-E. Zhu. P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov. 2015. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nano 10, 8 (2015), 682--686.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Dorfmuller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, Ch. Etrich, and K. Kern. 2010. Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Letters 12 (2010), 3596--3603.Google ScholarGoogle ScholarCross RefCross Ref
  5. Brian Edwards, Andrea Alù, Michael E. Young, Mário Silveirinha, and Nader Engheta. 2008. Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Phys. Rev. Lett. 100 (Jan 2008), 033903. Issue 3. https://doi.org/10.1103/PhysRevLett.100.033903Google ScholarGoogle ScholarCross RefCross Ref
  6. A. K. Geim and I. V. Grigorieva. 2013. Van der Waals heterostructures. Nature 499 (2013), 419--425.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. N. Grigorenko, M. Polini, and K. S. Novoselov. 2012. Graphene plasmonics. Nat. Photon 6 (Oct 2012), 749--758. Issue 11.Google ScholarGoogle Scholar
  8. N. Hassan, M. Mattheakis, and M. Ding. 2019. Sensorless Node Architecture for Events detection in Self-Powered Nanosensor Networks. Nano Communication Networks 19 (2019), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park. 2015. Visible-frequency hyperbolic metasurface. Nature 522 (Jun 2015), 192--196. Issue 7555.Google ScholarGoogle Scholar
  10. J. Y. Horiba. 2006. Lorentz Dispersion Model. Technical notes, spectroscopic ellipsometry (2006).Google ScholarGoogle Scholar
  11. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan. 2011. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat.Mater. 10 (2011), 582--586.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Jablan, H. Buljan, and M. Soljačić. 2009. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80 (Dec 2009), 245435. Issue 24.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Miquel Jornet and A. Cabellos. 2015. On the feeding mechanisms for graphene-based THz plasmonic nano-antennas. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) (2015), 168--171.Google ScholarGoogle ScholarCross RefCross Ref
  14. Charles Kittel. 2005. Introduction to solid state physics (8th ed.). John Wiley and Sons, Inc.Google ScholarGoogle Scholar
  15. Y. Li, S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur. 2015. On-chip zero-index metamaterials. Nat. Photon 9 (Oct 2015), 738--742. Issue 11.Google ScholarGoogle Scholar
  16. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. Martín-Moreno, and F. Guinea. 2014. Plasmons and Screening in Monolayer and Multilayer Black Phosphorus. Phys. Rev. Lett. 113 (Sep 2014), 106802. Issue 10.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Maier, M. Mattheakis, E. Kaxiras, M. Luskin, and D. Margetis. 2018. Universal behavior of a dispersive Dirac cone in gradient-index plasmonic metamaterials. Phys. Rev. B 97 (Jan 2018), 035307. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Maier, M. Mattheakis, E. Kaxiras, M. Luskin, and D. Margetis. 2019. Homogenization of plasmonic crystals: Seeking the epsilon-near-zero effect. Submitted (2019). https://arxiv.org/abs/1809.08276Google ScholarGoogle Scholar
  19. M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras. 2016. Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials. Physical Review B 94 (2016), 201404(R).Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Nemilentsau, T. Low, and G. Hanson. 2016. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Phys. Rev. Lett. 116 (Feb 2016), 066804. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto. 2016. 2D materials and van der Waals heterostructures. Science 353, 6298 (2016).Google ScholarGoogle Scholar
  22. Weibin Qiu, Pingping Qiu, Junbo Ren, Zhili Lin, Jia-Xian Wang, Qiang Kan, and Jiao-Qing Pan. 2017. Realization of conical dispersion and zero-refractive-index in graphene plasmonic crystal. Opt. Express 25, 26 (Dec 2017), 33350--33358. https://doi.org/10.1364/OE.25.033350Google ScholarGoogle ScholarCross RefCross Ref
  23. S. N. Shirodkar, M. Mattheakis, P. Cazeaux, P. Narang, M. Soljačić, and E. Kaxiras. 2018. Quantum plasmons with optical-range frequencies in doped few-layer graphene. Phys. Rev. B 97 (May 2018), 195435. Issue 19.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Silveirinha and N. Engheta. 2006. Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using &epsis;-Near-Zero Materials. Phys. Rev. Lett. 97 (Oct 2006), 157403. Issue 15.Google ScholarGoogle ScholarCross RefCross Ref
  25. Constantinos A Valagiannopoulos, Marios Mattheakis, Sharmila N Shirodkar, and Efthimios Kaxiras. 2017. Manipulating polarized light with a planar slab of black phosphorus. Journal of Physics Communications 1, 4 (nov 2017), 045003. https://doi.org/10.1088/2399-6528/aa90c8Google ScholarGoogle ScholarCross RefCross Ref
  26. B. Wang, X. Zhang, F. J. GarcÃŋa-Vidal, X. Yuan, and J. Teng. 2012. Strong Coupling of Surface Plasmon Polaritons in Monolayer Graphene Sheet Arrays. Physical Review Letters 109 (2012), 073901.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Wintz, P. Genevet, A. Ambrosio, A. Woolf, and F. Capasso. 2015. Holographic Metalens for Switchable Focusing of Surface Plasmons. Nano Letters 15, 5 (2015), 3585--3589. PMID: 25915541.Google ScholarGoogle ScholarCross RefCross Ref
  28. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam. 2014. Two-dimensional material nanophotonics. Nat. Photon 8 (2014), 899--907. Issue 12.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Graphene epsilon-near-zero plasmonic crystals

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        NANOCOM '19: Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication
        September 2019
        225 pages
        ISBN:9781450368971
        DOI:10.1145/3345312

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 September 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        NANOCOM '19 Paper Acceptance Rate35of52submissions,67%Overall Acceptance Rate97of135submissions,72%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader