skip to main content
research-article

Trinity: Enabling Self-Sustaining WSNs Indoors with Energy-Free Sensing and Networking

Published:13 February 2018Publication History
Skip Abstract Section

Abstract

Whereas a lot of efforts have been put on energy conservation in wireless sensor networks (WSNs), the limited lifetime of these systems still hampers their practical deployments. This situation is further exacerbated indoors, as conventional energy harvesting (e.g., solar) may not always work. To enable long-lived indoor sensing, we report in this article a self-sustaining sensing system that draws energy from indoor environments, adapts its duty-cycle to the harvested energy, and pays back the environment by enhancing the awareness of the indoor microclimate through an “energy-free” sensing. First of all, given the pervasive operation of heating, ventilation, and air conditioning (HVAC) systems indoors, our system harvests energy from airflow introduced by the HVAC systems to power each sensor node. Secondly, as the harvested power is tiny, an extremely low but synchronous duty-cycle has to be applied whereas the system gets no energy surplus to support existing synchronization schemes. So, we design two complementary synchronization schemes that cost virtually no energy. Finally, we exploit the feature of our harvester to sense the airflow speed in an energy-free manner. To our knowledge, this is the first indoor wireless sensing system that encapsulates energy harvesting, network operating, and sensing all together.

References

  1. 8-bit Atmel Microcontroller with 128KBytes In-System Programmable Flash. Retrieved from http://ww1.microchip.com/downloads/en/DeviceDoc/2467S.pdf.Google ScholarGoogle Scholar
  2. Chipcon’s CC2420 2.4G IEEE 802.15.4/ZigBee-ready RF Transceiver. Retrieved from www.ti.com/lit/ds/symlink/cc2420.pdf.Google ScholarGoogle Scholar
  3. EH-Link: Energy Harvesting Wireless Node. Retrieved from http://www.microstrain.com/wireless/eh-link.Google ScholarGoogle Scholar
  4. LabVIEW System Design Software. Retrieved from www.ni.com/labview/.Google ScholarGoogle Scholar
  5. LTC3588-1 Piezoelectric Energy Harvesting Power Supply. Retrieved from cds.linear.com/docs/en/datasheet/35881fa.pdf.Google ScholarGoogle Scholar
  6. G. Werner-Allen, P. Swieskowski, and M. Welsh. 2005. MoteLab: A wireless sensor network testbed. Proc. of the 4th ACM/IEEE IPSN. 483--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. NI 9229 4-Channel, 24-Bit Analog Input Module. Retrieved from sine.ni.com/nips/cds/view/p/lang/en/nid/208796.Google ScholarGoogle Scholar
  8. Supercapacitors PHB Series. Retrieved from http://www.cooperindustries.com/content/dam/public/bussmann/Electronics/Resources/product-datasheets/bus-elx-ds-4402-phb-series.pdf.Google ScholarGoogle Scholar
  9. A. Abdulhadi and R. Abhari. 2016. Multiport UHF RFID-Tag antenna for enhanced energy harvesting of self-powered wireless sensors. IEEE Trans. on Industrial Informatics 12, 2 (2016), 801--808.Google ScholarGoogle ScholarCross RefCross Ref
  10. Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng. 2010. Occupancy-driven energy management for smart building automation. In Proceedings of the 2nd ACM BuildSys. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Anton and H. Sodano. 2007. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures 16, 3 (2007), R1--R21.Google ScholarGoogle ScholarCross RefCross Ref
  12. ASHRAE. 1995. ANSI/ASHRAE Standard 135-1995: BACnet. (1995).Google ScholarGoogle Scholar
  13. A. Barrero-Gil, A. Sanz-Andrés, and M. Roura. 2009. Transverse galloping at low Reynolds numbers. Journal of Fluids and Structures 25, 7 (2009), 1236--1242.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Buettner, G. Yee, E. Anderson, and R. Han. 2006. X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th ACM SenSys. 307--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Chandrakasan, R. Amirtharajah, S. Cho, J. Goodman, G. Konduri, J. Kulik, W. Rabiner, and A. Wang. 1999. Design considerations for distributed microsensor systems. In Proceedings of IEEE CICC. 279--286.Google ScholarGoogle Scholar
  16. J. Chen, J. Li, and T. Lai. 2013. Trapping mobile targets in wireless sensor networks: An energy-efficient perspective. IEEE Trans. on Vehicular Technology 62, 7 (2013), 3287--3300.Google ScholarGoogle Scholar
  17. L. Cheng, J. Niu, Y. Gu, and T. He. 2016. Achieving efficient reliable flooding in low-duty-cycle wireless sensor networks. IEEE/ACM Trans. on Networking 24, 6 (2016), 3676--3689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Clark, D. Cox, H. Curtiss, J. Edwards, K. Hall, D. Peters, R. Scanlan, E. Simiu, F. Sisto, Th. Strganac, and E. Dowell. 1995. A Modern Course in Aeroelasticity. Springer.Google ScholarGoogle Scholar
  19. P. Corke, P. Valencia, P. Sikka, T. Wark, and L. Overs. 2007. Long-duration solar-powered wireless sensor networks. In Proceedings of the 4th ACM EmNets. 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore. 2010. Environmental wireless sensor networks. In Proceedings of IEEE 98, 11 (2010), 1903--1917.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. DeBruin, B. Campbell, and P. Dutta. 2013. Monjolo: An energy-harvesting energy meter architecture. In Proceedings of the 11th ACM SenSys. 18:1--18:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Doddavenkatappa, M. Chan, and A. Ananda. 2012. Indriya: A low-cost, 3D wireless sensor network testbed. Testbeds and Research Infrastructure. Development of Networks and Communities 90 (2012), 302--316.Google ScholarGoogle ScholarCross RefCross Ref
  23. Q. Dong, L. Yu, Z. Hong, and Y. Chen. 2010. Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Netowrks 2, 9 (2010), 703--709.Google ScholarGoogle Scholar
  24. P. Dutta, S. Dawson-Haggerty, Y. Chen, C. Liang, and A. Terzis. 2010. Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In Proceedings of the 8th ACM SenSys. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Ganeriwal, R. Kumar, and M. Srivastava. 2003. Timing-sync protocol for sensor networks. In Proceedings of the 1st ACM SenSys. 138--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. 2009. Collection tree protocol. In Proceedings of the 7th ACM SenSys. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Gu, L. He, T. Zhu, and T. He. 2014. Achieving energy-synchronized communication in energy-harvesting wireless sensor networks. ACM Trans. on Embedded Computing Systems 13, 2 (2014), 68:1--68:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Gu and T. He. 2007. Data forwarding in extremely low duty-cycle sensor networks with unreliable communication links. In Proceedings of the 5th ACM SenSys. 321--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Guo, M. Mohammad, S. Saha, M. Chan, S. Gilbert, and D. Leong. 2016. PSync: Visible light-based time synchronization for internet of things (IoT). In Proceedings of the 35th IEEE INFOCOM. 1--9.Google ScholarGoogle Scholar
  30. H. Huang, J. Yun, Z. Zhong, S. Kim, and T. He. 2013. PSR: Practical synchronous rendezvous in low-duty-cycle wireless networks. In Proceedings of the 32nd IEEE INFOCOM. 2661--2669.Google ScholarGoogle Scholar
  31. F. Li, J. Luo, G. Shi, and Y. He. 2017. ART: Adaptive frequency-temporal co-existing of ZigBee and wifi. IEEE Trans. on Mobile Computing 16, 3 (2017), 662--674. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Li, G. Xing, L. Sun, H. Wei, R. Zhou, and H. Zhu. 2011. Exploiting FM radio data system for adaptive clock calibration in sensor networks. In Proceedings of the 9th ACM MobiSys. 169--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Li, R. Tan, and D. Yau. 2017. Natural timestamping using powerline electromagnetic radiation. In Proceedings of the 16th ACM/IEEE IPSN. 55--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Li, W. Chen, C. Li, M. Li, X. Li, and Y. Liu. 2014. Flight: Clock calibration and context recognition using fluorescent lighting. IEEE Trans. on Mobile Computing 13, 7 (2014), 1495--1508.Google ScholarGoogle ScholarCross RefCross Ref
  35. C. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. 2009. RACNet: A high-fidelity data center sensing network. In Proceedings of the 7th ACM SenSys. 15--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan, and M. Srivastava. 2005. Heliomote: Enabling long-lived sensor networks through solar energy harvesting. In Proceedings of the 3rd ACM SenSys. 309--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. 2004. The flooding time synchronization protocol. In Proceedings of the 2nd ACM SenSys. 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Martin, Z. Charbiwala, and M. Srivastava. 2012. DoubleDip: Leveraging thermoelectric harvesting for low power monitoring of sporadic water. In Proceedings of the 10th ACM SenSys. 225--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Matthews, S. Bobovych, N. Banerjee, J. Parkerson, R. Robucci, and C. Patel. 2015. Perpetuu: A tiered solar-powered GIS microserver. ACM Trans. on Embedded Computing Systems 14, 4 (2015), 78:1--78:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Nishimoto, Y. Kawahara, and T. Asami. 2010. Prototype implementation of ambient RF energy harvesting wireless sensor networks. In Proceedings of IEEE Sensors. 1282--1287.Google ScholarGoogle Scholar
  41. M. Paidoussis, S. Price, and E. de Langre. 2011. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.Google ScholarGoogle Scholar
  42. J. Polastre, J. Hill, and D. Culler. 2004. Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd ACM SenSys. 95--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Sample, D. Yeager, P. Powledge, A. Mamishev, and J. Smith. 2008. Design of an RFID-based battery-free programmable sensing platform. IEEE Trans. on Instrumentation and Measurement 57, 11 (2008), 2608--2615.Google ScholarGoogle ScholarCross RefCross Ref
  44. J. Sirohi and R. Mahadik. 2012. Harvesting wind energy using a galloping piezoelectric beam. Journal of Vibration and Acoustics 134, 1 (2012), 011009.1--011009.6.Google ScholarGoogle ScholarCross RefCross Ref
  45. J. Taneja, A. Krioukov, S. Dawson-Haggerty, and D. Culler. 2013. Enabling advanced environmental conditioning with a building application stack. In Proceedings of the 4th IGCC.Google ScholarGoogle Scholar
  46. N. Watthanawisuth, A. Tuantranont, and T. Kerdcharoen. 2009. Microclimate real-time monitoring based on zigbee sensor network. In Proc. of IEEE Sensors. 1814--1818.Google ScholarGoogle Scholar
  47. C. Williams and R. Yates. 1995. Analysis of a micro-electric generator for microsystems. In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators Eurosensors. 369--372.Google ScholarGoogle Scholar
  48. Z. Wu, Z. Liu, X. Huang, and J. Liu. 2009. Real-time indoor monitoring system based on wireless sensor networks. In Proceedings of SPIE. 22--25.Google ScholarGoogle Scholar
  49. T. Xiang, Z. Chi, F. Li, J. Luo, L. Tang, L. Zhao, and Y. Yang. 2013. Powering indoor sensing with airflows: A trinity of energy harvesting, synchronous duty-cycling, and sensing. In Proceedings of the 11th ACM SenSys. 16:1--16:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Y. Yang, J. Hao, J. Luo, and S. Pan. 2017. CeilingSee: Device-free occupancy inference through lighting infrastructure based LED sensing. In Proceedings of the 15th IEEE PerCom. 247--256.Google ScholarGoogle Scholar
  51. Y. Yang, L. Zhao, and L. Tang. 2013. Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 6 (2013), 064105:1--064105:4.Google ScholarGoogle ScholarCross RefCross Ref
  52. L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta. 2012. Grafting energy-harvesting leaves onto the sensornet tree. In Proceedings of the 11th ACM/IEEE IPSN. 197--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. Zhang, A. Syed, Y. Cho, and J. Heidemann. 2011. Steam-powered sensing. In Proceedings of the 9th ACM SenSys. 204--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. T. Zhu, Z. Zhong, G. Yu, T. He, and Z. Zhang. 2009. Leakage-aware energy synchronization for wireless sensor networks. In Proceedings of the 7th ACM MobiSys. 319--332. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Trinity: Enabling Self-Sustaining WSNs Indoors with Energy-Free Sensing and Networking

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Embedded Computing Systems
        ACM Transactions on Embedded Computing Systems  Volume 17, Issue 2
        Special Issue on MEMCODE 2015 and Regular Papers (Diamonds)
        March 2018
        640 pages
        ISSN:1539-9087
        EISSN:1558-3465
        DOI:10.1145/3160927
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 February 2018
        • Accepted: 1 November 2017
        • Revised: 1 September 2017
        • Received: 1 March 2017
        Published in tecs Volume 17, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader