skip to main content
10.1145/1145768.1145796acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Approximate radical of ideals with clusters of roots

Authors Info & Claims
Published:09 July 2006Publication History

ABSTRACT

We present a method based on Dickson's lemma to compute the "approximate radical" of a zero dimensional ideal I in C[x1, . . . , xm] which has zero clusters: the approximate radical ideal has exactly one root in each cluster for sufficiently small clusters. Our method is "global" in the sense that it does not require any local approximation of the zero clusters: it reduces the problem to the computation of the numerical nullspace of the so called "matrix of traces", a matrix computable from the generating polynomials of I. To compute the numerical nullspace of the matrix of traces we propose to use Gauss elimination with pivoting, and we prove that if I has k distinct zero clusters each of radius at most ε in the ∞-norm, then k steps of Gauss elimination on the matrix of traces yields a submatrix with all entries asymptotically equal to ε2. We also prove that the computed approximate radical has one root in each cluster with coordinates which are the arithmetic mean of the cluster, up to an error term asymptotically equal to ε2. In the univariate case our method gives an alternative to known approximate square-free factorization algorithms which is simpler and its accuracy is better understood.

References

  1. Z. Bai, J. Demmel, and A. McKenney. On the conditioning of the nonsymmetric eigenproblem: Theory and software. Technical report, Knoxville, TN, USA, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Briand and L. Gonzalez-Vega. Multivariate Newton sums: Identities and generating functions. Communications in Algebra, 30(9):4527--4547, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Cardinal and B. Mourrain. Algebraic approach of residues and applications. In J. Reneger, M. Shub, and S. Smale, editors, Proceedings of AMS-Siam Summer Seminar on Math. of Numerical Analysis (Park City, Utah, 1995), volume 32 of Lectures in Applied Mathematics, pages 189--219, 1996.Google ScholarGoogle Scholar
  4. E. Cattani, A. Dickenstein, and B. Sturmfels. Computing multidimensional residues. In Algorithms in algebraic geometry and applications (Santander, 1994), volume 143 of Progr. Math., pages 135--164. Birkhäuser, Basel, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Cattani, A. Dickenstein, and B. Sturmfels. Residues and resultants. J. Math. Sci. Univ. Tokyo, 5(1):119--148, 1998.Google ScholarGoogle Scholar
  6. M. Chardin. Multivariate subresultants. Journal of Pure and Applied Algebra, 101:129--138, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  7. R. M. Corless. Gröbner bases and matrix eigenproblems. ACM SIGSAM Bulletin, 30(4):26--32, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. M. Corless, P. M. Gianni, and B. M. Trager. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In ISSAC '97, pages 133--140, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt. The singular value decomposition for polynomial systems. In ISSAC '95, pages 195--207, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial systems. In ISSAC '05, pages 116--123, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Demmel. Accurate singular value decompositions of structured matrices. SIMAX, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Demmel and P. Koev. Accurate SVD's of polynomial vandermonde matrices involving orthonormal polynomials. Linear Algebra Applications, to appear, 2005.Google ScholarGoogle Scholar
  13. G. M. Díaz-Toca and L. González-Vega. An explicit description for the triangular decomposition of a zero-dimensional ideal through trace computations. In Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000), volume 286 of Contemp. Math., pages 21--35. AMS, 2001.Google ScholarGoogle Scholar
  14. L. Dickson. Algebras and Their Arithmetics. University of Chicago Press, 1923.Google ScholarGoogle Scholar
  15. K. Friedl and L. Rónyai. Polynomial time solutions of some problems of computational algebra. In STOC '85, pages 153--162. ACM Press, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.Google ScholarGoogle Scholar
  17. V. Hribernig and H. J. Stetter. Detection and validation of clusters of polynomial zeros. J. Symb. Comput., 24(6):667--681, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin, (9):757--801, 1966.Google ScholarGoogle Scholar
  19. E. Kaltofen. On computing determinants of matrices without divisions. In P. S. Wang, editor, ISSAC'92, pages 342--349, New York, N. Y., 1992. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Kaltofen and J. May. On approximate irreducibility of polynomials in several variables. In ISSAC '03, pages 161--168. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. H. Ko, T. Sakkalis, and N. M. Patrikalakis. Nonlinear Polynomial Systems: Multiple Roots and their Multiplicities. Proceedings of the Shape Modeling International 2004, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Lazard. Resolution des systemes d'equations algebriques. Theoret. Comp. Sci., 15(1), 1981. French, English summary.Google ScholarGoogle Scholar
  23. G. Lecerf. Quadratic Newton iterarion for systems with multiplicity. Foundations of Computational Mathematics, (2):247--293, 2002.Google ScholarGoogle Scholar
  24. A. Leykin, J. Verschelde, and A. Zhao. Evaluation of Jacobian matrices for Newton's method with deflation to approximate isolated singular solutions of polynomial systems. In D. Wang and L. Zhi, editors, SNC 2005 Proceedings. International Workshop on Symbolic-Numeric Computation., pages 19--28, 2005.Google ScholarGoogle Scholar
  25. D. Manocha and J. Demmel. Algorithms for Intersecting Parametric and Algebraic Curves II: Multiple Intersections. Graphical Models and Image Processing, 57(2):81--100, March 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. G. Marinari, T. Mora, and H. M. Möller. Gröbner duality and multiplicities in polynomial system solving. In ISSAC '95, pages 167--179, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. M. Möller and H. J. Stetter. Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Numerische Matematik, 70:311--329, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. P. Morgan, A. J. Sommese, and C. W. Wampler. Computing singular solutions to nonlinear analytic systems. Numer. Math., 58(7):669--684, 1991.Google ScholarGoogle Scholar
  29. A. P. Morgan, A. J. Sommese, and C. W. Wampler. Computing singular solutions to polynomial systems. Adv. Appl. Math., 13(3):305--327, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. P. Morgan, A. J. Sommese, and C. W. Wampler. A power series method for computing singular solutions to nonlinear analytic systems. Numer. Math., 63(3):391--409, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Moritsugu and K. Kuriyama. A linear algebra method for solving systems of algebraic equations. In RISC-Linz Report Series, volume 35, 1997.Google ScholarGoogle Scholar
  32. S. Moritsugu and K. Kuriyama. On multiple zeros of systems of algebraic equations. In ISSAC '99, pages 23--30, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. Mourrain. Generalized normal forms and polynomial system solving. In ISSAC '05, pages 253--260, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Ojika. Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations. J. Math. Anal. Appl., 123(1):199--221, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  35. T. Ojika. Modified deflation algorithm for the solution of singular problems. II. Nonlinear multipoint boundary value problems. J. Math. Anal. Appl., 123(1):222--237, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  36. T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl., 96(2):463--479, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  37. R. S. Pierce. Associative algebras, volume 88 of Graduate Text in Mathematics. Springer-Verlag, 1982.Google ScholarGoogle Scholar
  38. T. Sasaki and M.-T. Noda. Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations. J. Inform. Process., 12(2):159--168, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. E. Schost. Personal communication, 2005.Google ScholarGoogle Scholar
  40. V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In ISSAC '99, pages 53--58, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. J. Stetter. Analysis of zero clusters in multivariate polynomial systems. In ISSAC '96, pages 127--136, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. H. J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied Mathematics, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Szanto. Solving over-determined systems by subresultant methods. Preprint, 2001.Google ScholarGoogle Scholar
  44. K. Yokoyama, M. Noro, and T. Takeshima. Solutions of systems of algebraic equations and linear maps on residue class rings. J. Symb. Comput., 14(4):399--417, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Zeng. A method computing multiple roots of inexact polynomials. In ISSAC '03, pages 266--272, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Approximate radical of ideals with clusters of roots

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation
        July 2006
        374 pages
        ISBN:1595932763
        DOI:10.1145/1145768
        • General Chair:
        • Barry Trager

        Copyright © 2006 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 July 2006

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%

        Upcoming Conference

        ISSAC '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader