Skip to main content
Log in

A novel image fusion framework for night-vision navigation and surveillance

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The night-vision image fusion plays a critical role in detecting targets and obstructions in low light or total darkness, which has great importance for pedestrian recognition, vehicle navigation, surveillance and monitoring applications. The central idea is to fuse low-light visible and infrared imagery into a single output. In this paper, we describe a new fusion framework for spatially registered visual and infrared images. The proposed framework utilizes the properties of fractal dimension and phase congruency in the non-subsampled contourlet transform (NSCT) domain. The proposed framework applies multiscale NSCT on visual and IR images to get low- and high-frequency bands. The varied frequency bands of the transformed images are then fused while exploiting their characteristics. Finally, the inverse NSCT is performed to get the fused image. The performance of the proposed framework is validated by extensive experiments on different scene imaginary, where the definite advantages are demonstrated subjectively and objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Essock, E.A., McCarley, J.S., Sinai, M.J., Krebs, W.K.: Functional assessment of night-vision enhancement of real-world scenes. Invest. Ophthalmol. Vis. Sci. 36, 23–68 (1996)

    Google Scholar 

  2. Dohler, H.U., Hecker, P., Rodloff, R.: Image data fusion for future enhanced vision systems. In: Proceeding of RTO-SCI Symposium on Sensor Data Fusion and Integration of the Human Element, pp. 8-1–8-12 (1998)

  3. Smith, M.I., Rood, G.: Image fusion of II and IR date for helicopter pilotage. In: Proceeding of SPIE: Integrated Command Environments 4126, 186–197 (2000)

  4. Das, S., Zhang, Y.-L., Krebs, W.K.: Color night vision for navigation and surveillance. Transp. Res. Rec. 1708, 40–46 (2000)

    Article  Google Scholar 

  5. Wang, J., Chen, D., Chen, H., Yang, J.: On pedestrian detection and tracking in infrared videos. Pattern Recognit. Lett. 33(6), 775–785 (2012)

    Article  Google Scholar 

  6. Smeelen, M.A., Schwering, P.B.W., Toet, A., Loog, M.: Semi-hidden target recognition in gated viewer images fused with thermal IR images. Inf. Fusion, 2013 (In Press)

  7. Li, S.T., Yang, B.: Multifocus image fusion using region segmentation and spatial frequency. Image Vis. Comput. 26(7), 971–979 (2008)

    Article  Google Scholar 

  8. Amditis, A., Polychronopoulos, A., Floudas, N., Andreone, L.: Fusion of infrared vision and radar for estimating the lateral dynamics of obstacles. Inf. Fusion 6(2), 129–141 (2005)

    Article  Google Scholar 

  9. Aslanta, V., Kurban, R.: Fusion of multi-focus images using differential evolution algorithm. Expert Syst. Appl. 37(12), 8861–8870 (2010)

    Article  Google Scholar 

  10. Han, J., Pauwels, E.J., de Zeeuw, P.: Fast saliency-aware multi-modality image fusion. Neurocomputing 111, 70–80 (2013)

    Article  Google Scholar 

  11. Zhao, J., Zhou, Q., Chen, Y., Feng, H., Xu, Z., Li, Q.: Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition. Infrared Phys. Technol. 56, 93–99 (2013)

    Article  Google Scholar 

  12. Luo, X., Zhang, J., Dai, Q.: A regional image fusion based on similarity characteristics. Signal Process. 92(5), 1268–1280 (2012)

    Article  Google Scholar 

  13. Bai, X., Chen, X., Zhou, F., Liu, Z., Xue, B.: Multiscale top-hat selection transform based infrared and visual image fusion with emphasis on extracting regions of interest. Infrared Phys. Technol. 60, 81–93 (2013)

    Article  Google Scholar 

  14. Chavez, P.S., Kwarteng, A.Y.: Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sensing 55, 339–348 (1989)

    Google Scholar 

  15. Mitianoudis, N., Stathaki, T.: Adaptive image fusion using ICA bases. In: Procedding of IEEE Conference on Acoustics, Speech, and Signal Processing 2, 829–832 (2006)

  16. Haghighat, M.B.A., Aghagolzadeh, A., Seyedarabi, H.: Multi-focus image fusion for visual sensor networks in DCT domain. Comput. Electr. Eng. 37, 789–797 (2011)

    Article  MATH  Google Scholar 

  17. Toet, A., Ruyven, J.J., Valeton, J.M.: Merging thermal and visual images by a contrast pyramid. Opt. Eng. 28(7), 789–792 (1989)

    Article  Google Scholar 

  18. Petrovic, V.S., Xydeas, C.S.: Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 13(2), 228–237 (2004)

    Article  Google Scholar 

  19. Piella, G.: A general framework for multiresolution image fusion: from pixels to regions. Inf. Fusion 4(4), 259–280 (2003)

    Article  Google Scholar 

  20. Loza, A., Bull, D., Canagarajah, N., Achim, A.: Non-Gaussian model-based fusion of noisy images in the wavelet domain. Comput. Vis. Image Underst. 114(1), 54–65 (2010)

    Article  Google Scholar 

  21. De, I., Chanda, B.: A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Sig. Process. 86(5), 924–936 (2006)

    Article  MATH  Google Scholar 

  22. Bhatnagar, G., Wu, Q.M.J., Raman, B.: Navigation and surveillance using night vision and image fusion. In: Procedding of IEEE Symposium on Industrial Electronics and Applications, pp. 342–347 (2011)

  23. Yang, L., Guo, B.L., Ni, W.: Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72(13), 203–211 (2008)

    Article  Google Scholar 

  24. Rockinger, O.: Image sequence fusion using a shift invariant wavelet transform. In: Procedding of International Conference on Image Processing, pp. 288–291 (1997)

  25. Zhang, Q., Guo, B.L.: Multifocus image fusion using the nonsubsampled contourlet transform. Sig. Process. 89(7), 1334–1346 (2009)

    Article  MATH  Google Scholar 

  26. Chai, Y., Li, H., Zhang, X.: Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain. Optik 123, 569–581 (2012)

    Article  Google Scholar 

  27. da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  28. Kovesi, P.: Image features from phase congruency, videre. J. Comput. Vision. Res. 1(3), 2–26 (1999)

    Google Scholar 

  29. Kovesi, P.: Phase congruency: a low-level image invariant. Psychol. Res. 64(2), 136–148 (2000)

    Article  Google Scholar 

  30. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Co., San Francisco (1982)

  31. Peleg, S., Naor, J., Hartley, R., Avnir, D.: Multiple resolution texture analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. 6, 518–522 (1984)

    Article  Google Scholar 

  32. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  33. Liu, Z., Forsyth, D.S., Laganiere, R.: A feature-based metric for the quantitative evaluation of pixel-level image fusion. Comput. Vis. Image Underst. 109(1), 56–68 (2008)

    Article  Google Scholar 

  34. Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., Wu, W.: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 94–109 (2012)

    Article  Google Scholar 

  35. Hossny, M., Nahavandi, S., Vreighton, D.: Comments on information measure for performance of image fusion. Electron. Lett. 44(18), 1066–1067 (2008)

    Article  Google Scholar 

  36. Yang, C., Zhang, J., Wang, X., Liu, X.: A novel similarity based quality metric for image fusion. Inf. Fusion 9, 156–160 (2008)

    Article  Google Scholar 

  37. Xydeas, C.S., Petrovic, V.: Objective pixel-level image fusion performance measure. In: Proceeding of SPIE, Sensor Fusion: Architectures, Algorithms, and Applications IV 4051, 89–98 (2002)

  38. Saha, A., Bhatnagar, G., Wu, Q.M.J.: SVD filter based multiscale approach for image quality assessment. In: Procedding of International Conference on Multimedia and Expo Workshops, pp. 43–48, (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, G., Liu, Z. A novel image fusion framework for night-vision navigation and surveillance. SIViP 9 (Suppl 1), 165–175 (2015). https://doi.org/10.1007/s11760-014-0740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0740-6

Keywords

Navigation