Skip to main content
Log in

Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps.

Methods

We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe.

Results

We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as ‘very useful’ in 71% and were statistically significantly more useful than the baseline reconstructions.

Conclusions

Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carvalho J, Allan L, Chaoui R, Copel J, DeVore G, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S (2013) ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 41(3):348

    Article  PubMed  Google Scholar 

  2. Cikes M, Tong L, Sutherland G, Dhooge J (2014) Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. JACC Cardiovasc Imaging 7(8):812–823

    Article  PubMed  Google Scholar 

  3. Cohen B, Dinstein I (2002) New maximum likelihood motion estimation schemes for noisy ultrasound images. Pattern Recognit 35(2):455

    Article  Google Scholar 

  4. DeVore G, Falkensammer P, Sklansky M, Platt L (2003) Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol 22(4):380

    Article  CAS  PubMed  Google Scholar 

  5. Jansz M, Seed M, van Amerom J, Wong D, Grosse-Wortmann L, Yoo SJ, Macgowan C (2010) Metric optimized gating for fetal cardiac MRI. Magn Reson Med 64(5):1304–1314

    Article  PubMed  Google Scholar 

  6. Kainz B, Alansary A, Malamateniou C, Keraudren K, Rutherford M, Hajnal JV, Rueckert D (2015) Flexible reconstruction and correction of unpredictable motion from stacks of 2D images. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention—MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9350. Springer, Cham, pp 555–562. doi:10.1007/978-3-319-24571-3_66

  7. Loizou C, Pattichis C, Christodoulou C, Istepanian R, Pantziaris M, Nicolaides A (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelect 52(10):1653

    Article  Google Scholar 

  8. Loizou C, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput Methods Programs Biomed 114(1):109

    Article  PubMed  Google Scholar 

  9. Mattausch O, Goksel O, Orcun (2016) Monte-Carlo ray-tracing for realistic interactive ultrasound simulation. In: Bruckner, Preim B, Vilanova A, Hauser H, Hennemuth A, Lundervold A (eds), Eurographics workshop on visual computing for biology and medicine (vcbm.20161285), The Eurographics Association. doi:10.2312/vcbm.20161285

  10. Nelson T, Pretorius D, Sklansky M, Hagen-Ansert S (1996) Three-dimensional echocardiographic evaluation of fetal heart anatomy and function: acquisition, analysis, and display. J Ultrasound Med 15(1):1

    Article  CAS  PubMed  Google Scholar 

  11. Odille F, Bustin A, Chen B, Vuissoz PA, Felblinger J (2015) Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention—MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham, pp 435–442. doi:10.1007/978-3-319-24574-4_52

  12. Peterfi I, Kellenyi L, Szilagyi A (2014) Noninvasive recording of true-to-form fetal ECG during the third trimester of pregnancy. Obstet Gynecol Int 2014. Article ID 285636

  13. Schoisswohl A, Falkensammer P (2005) Method and apparatus for obtaining a volumetric scan of a periodically moving object. US Patent 6,966,878

  14. Tanner C, Flach B, Eggenberger C, Mattausch O, Bajka M, Goksel O (2016) 4D Reconstruction of fetal heart ultrasound images in presence of fetal motion. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention—MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9900. Springer, Cham, pp 539–601. doi:10.1007/978-3-319-46720-7_69

  15. Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelect 61(1):102–119

    Article  Google Scholar 

  16. Uittenbogaard L, Haak M, Spreeuwenberg M, Van Vugt J (2008) A systematic analysis of the feasibility of four-dimensional ultrasound imaging using spatiotemporal image correlation in routine fetal echocardiography. Ultrasound Obstet Gynecol 31(6):625

    Article  CAS  PubMed  Google Scholar 

  17. Wachinger C, Yigitsoy M, Rijkhorst EJ, Navab N (2012) Manifold learning for image-based breathing gating in ultrasound and MRI. Med Image Anal 16(4):806

    Article  PubMed  Google Scholar 

  18. Yagel S, Benachi A, Bonnet D, Dumez Y, Hochner-Celnikier D, Cohen S, Valsky D, Fermont L (2006) Rendering in fetal cardiac scanning: the intracardiac septa and the coronal atrioventricular valve planes. Ultrasound Obstet Gynecol 28(3):266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding wa provided by the Swiss Commission for Technology and Innovation (#16925 PFLS-LS) and the Swiss National Science Foundation (#150620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Tanner.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the provincial ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanner, C., Flach, B., Eggenberger, C. et al. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion. Int J CARS 12, 1307–1317 (2017). https://doi.org/10.1007/s11548-017-1624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1624-3

Keywords

Navigation