Skip to main content

Advertisement

Log in

Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers.

Methods

Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts.

Results

Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography (\(p < 0.001\)).

Conclusion

Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Golby AJ, Kindlmann G, Norton I, Yarmarkovich A, Pieper S, Kikinis R (2011) Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery 68(2):496–505. doi:10.1227/NEU.0b013e3182061ebb

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T, Morita A, Masutani Y, Aoki S, Kirino T (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56(1 Suppl):98–109 (discussion 198–109)

    PubMed  Google Scholar 

  3. Castellano A, Bello L, Michelozzi C, Gallucci M, Fava E, Iadanza A, Riva M, Casaceli G, Falini A (2012) Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro-oncology 14(2):192–202. doi:10.1093/neuonc/nor188

    Article  PubMed  Google Scholar 

  4. Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, Giussani C, Cadioli M, Blasi V, Casarotti A, Papagno C, Gupta AK, Gaini S, Scotti G, Falini A (2008) Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage 39(1):369–382. doi:10.1016/j.neuroimage.2007.08.031

    Article  PubMed  Google Scholar 

  5. Shahar T, Rozovski U, Marko NF, Tummala S, Ziu M, Weinberg JS, Rao G, Kumar VA, Sawaya R, Prabhu SS (2014) Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging. Neurosurgery 75(1):23–30. doi:10.1227/NEU.0000000000000338

    Article  PubMed  Google Scholar 

  6. Trope M, Shamir RR, Joskowicz L, Medress Z, Rosenthal G, Mayer A, Levin N, Bick A, Shoshan Y (2014) The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-014-1126-5

    PubMed  Google Scholar 

  7. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  CAS  PubMed  Google Scholar 

  8. Nimsky C (2014) Fiber tracking—we should move beyond diffusion tensor imaging. World Neurosurg 82(1):35–36. doi:10.1016/j.wneu.2013.08.035

    Article  PubMed  Google Scholar 

  9. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, Connelly A (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118(6):1367–1377. doi:10.3171/2013.2.JNS121294

    Article  PubMed  Google Scholar 

  10. Bucci M, Mandelli ML, Berman JI, Amirbekian B, Nguyen C, Berger MS, Henry RG (2013) Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. NeuroImage Clin 3:361–368. doi:10.1016/j.nicl.2013.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qazi AA, Radmanesh A, O’Donnell L, Kindlmann G, Peled S, Whalen S, Westin CF, Golby AJ (2009) Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. NeuroImage 47(Suppl 2):T98–106. doi:10.1016/j.neuroimage.2008.06.034

    Article  PubMed  Google Scholar 

  12. Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. NeuroImage 30(4):1100–1111. doi:10.1016/j.neuroimage.2005.11.015

    Article  PubMed  Google Scholar 

  13. Kinoshita M, Yamada K, Hashimoto N, Kato A, Izumoto S, Baba T, Maruno M, Nishimura T, Yoshimine T (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage 25(2):424–429. doi:10.1016/j.neuroimage.2004.07.076

    Article  PubMed  Google Scholar 

  14. Clark CA, Barrick TR, Murphy MM, Bell BA (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? NeuroImage 20(3):1601–1608

    Article  PubMed  Google Scholar 

  15. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40(5):885–895

    Article  CAS  PubMed  Google Scholar 

  16. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4):1267–1277. doi:10.1016/j.neuroimage.2008.03.036

    Article  CAS  PubMed  Google Scholar 

  17. Tuch DS (2004) Qball imaging. Magn Reson Med 52(6):1358–1372

    Article  PubMed  Google Scholar 

  18. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582

    Article  PubMed  Google Scholar 

  19. Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386

    Article  PubMed  Google Scholar 

  20. Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3):1176–1185

    Article  PubMed  Google Scholar 

  21. Özarslan E, Shepherd TM, Vemuri BC, Blackband SJ, Mareci TH (2006) Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3):1086–1103

    Article  PubMed  Google Scholar 

  22. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1):144–155

    Article  CAS  PubMed  Google Scholar 

  23. Malcolm JG, Shenton ME, Rathi Y (2010) Filtered multitensor tractography. IEEE Trans Med Imaging 29(9):1664–1675. doi:10.1109/TMI.2010.2048121

    Article  PubMed  PubMed Central  Google Scholar 

  24. Landman BA, Bogovic JA, Wan H, ElShahaby FEZ, Bazin PL, Prince JL (2012) Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI. NeuroImage 59(3):2175–2186

    Article  PubMed  Google Scholar 

  25. Pasternak O, Assaf Y, Intrator N, Sochen N (2008) Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. Magn Reson Imaging 26(8):1133–1144

    Article  PubMed  Google Scholar 

  26. Kuhnt D, Bauer MH, Egger J, Richter M, Kapur T, Sommer J, Merhof D, Nimsky C (2013) Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing: initial experience. Neurosurgery 72(0 1):165–175

    PubMed  PubMed Central  Google Scholar 

  27. Fernandez-Miranda JC (2013) Editorial: beyond diffusion tensor imaging. J Neurosurg 118(6):1365–1366

    Article  Google Scholar 

  28. Abhinav K, Yeh FC, Mansouri A, Zadeh G, Fernandez-Miranda JC (2015) High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro-oncology 17(9):1199–1209

    PubMed  Google Scholar 

  29. Zhang H, Wang Y, Lu T, Qiu B, Tang Y, Ou S, Tie X, Sun C, Xu K, Wang Y (2013) Differences between generalized q-sampling imaging and diffusion tensor imaging in the preoperative visualization of the nerve fiber tracts within peritumoral edema in brain. Neurosurgery 73(6):1044–1053. doi:10.1227/NEU.0000000000000146 discussion 1053

    Article  PubMed  Google Scholar 

  30. Baumgartner C, Michailovich O, Levitt J, Pasternak O, Bouix S, Westin C, Rathi Y (2012) A unified tractography framework for comparing diffusion models on clinical scans. In: CDMRI Workshop-MICCAI, Nice

  31. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM 3rd (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13(6):967–975

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Wang Y, Gerig G, Gouttard S, Tao R, Fletcher T, Styner M (2010) Quality control of diffusion weighted images. In: Proceedings—society of photo-optical instrumentation engineers, p 7628. doi:10.1117/12.844748

  33. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, Vemuri B, Commowick O, Prima S, Stamm A, Goubran M, Khan A, Peters T, Neher P, Maier-Hein KH, Shi Y, Tristan-Vega A, Veni G, Whitaker R, Styner M, Westin CF, Gouttard S, Norton I, Chauvin L, Mamata H, Gerig G, Nabavi A, Golby A, Kikinis R (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25(6):875–882

    Article  PubMed  Google Scholar 

  34. Mormina E, Longo M, Arrigo A, Alafaci C, Tomasello F, Calamuneri A, Marino S, Gaeta M, Vinvi SL, Granata F (2015) MRI tractography of corticospinal tract and arcuate fasciculus in high-grade gliomas performed by constrained spherical deconvolution: qualitative and quantitative analysis. Am J Neuroradiol 36(10):1853–1858

    Article  CAS  PubMed  Google Scholar 

  35. Auriat A, Borich M, Snow N, Wadden K, Boyd L (2015) Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke. NeuroImage Clin 7:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiss C, Tursunova I, Neuschmelting V, Lockau H, Nettekoven C, Oros-Peusquens AM, Stoffels G, Rehme AK, Faymonville AM, Shah NJ (2015) Improved nTMS-and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NeuroImage Clin 7:424–437

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480. doi:10.1002/nbm.781

    Article  PubMed  Google Scholar 

  38. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, Mori S (2006) Quantitative characterization of the corticospinal tract at 3T. Am J Neuroradiol 27(10):2168–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reich DS, Zackowski KM, Gordon-Lipkin EM, Smith SA, Chodkowski B, Cutter GR, Calabresi PA (2008) Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. Am J Neuroradiol 29(2):333–339

    Article  CAS  PubMed  Google Scholar 

  40. Halwani GF, Loui P, Rüber T, Schlaug G (2011) Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol 2:1–9. doi:10.3389/fpsyg.2011.00156

    Article  Google Scholar 

  41. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947

    Article  CAS  PubMed  Google Scholar 

  42. Propper RE, O’Donnell LJ, Whalen S, Tie Y, Norton IH, Suarez RO, Zollei L, Radmanesh A, Golby AJ (2010) A combined fMRI and DTI examination of functional language lateralization and arcuate fasciculus structure: effects of degree versus direction of hand preference. Brain Cogn 73(2):85–92. doi:10.1016/j.bandc.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johnson H, Harris G, Williams K (2007) BRAINSFit: mutual information rigid registrations of whole-brain 3D images, using the insight toolkit. Insight J. http://hdl.handle.net/1926/1291

  44. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y (2009) Free water elimination and mapping from diffusion MRI. Magn Reson Med 62(3):717–730. doi:10.1002/mrm.22055

    Article  PubMed  Google Scholar 

  45. Peled S, Friman O, Jolesz F, Westin CF (2006) Geometrically constrained two-tensor model for crossing tracts in DWI. Magn Reson Imaging 24(9):1263–1270. doi:10.1016/j.mri.2006.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen Z, Tie Y, Olubiyi O, Rigolo L, Mehrtash A, Norton I, Pasternak O, Rathi Y, Golby AJ, O’Donnell LJ (2015) Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography. NeuroImage Clin 7:815–822

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mandelli ML, Berger MS, Bucci M, Berman JI, Amirbekian B, Henry RG (2014) Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. J Neurosurg 121(2):349–358. doi:10.3171/2014.4.JNS131160

    Article  PubMed  Google Scholar 

  48. McDonald CR, White NS, Farid N, Lai G, Kuperman JM, Bartsch H, Hagler DJ, Kesari S, Carter BS, Chen CC, Dale AM (2013) Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. Am J Neuroradiol 34(6):1157–1163. doi:10.3174/ajnr.A3372

    Article  CAS  PubMed  Google Scholar 

  49. Radmanesh A, Zamani AA, Whalen S, Tie Y, Suarez RO, Golby AJ (2015) Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Clin Neurol Neurosurg 129:44–49

    Article  PubMed  Google Scholar 

  50. Mendoza J, Foundas A (2007) Clinical neuroanatomy: a neurobehavioral approach. Springer, Heidelberg

    Google Scholar 

  51. Stippich C (2007) Clinical functional MRI. Springer, Heidelberg

    Book  Google Scholar 

  52. Snell RS (2010) Clinical neuroanatomy. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  53. Conti A, Raffa G, Granata F, Rizzo V, Germano A, Tomasello F (2014) Navigated transcranial magnetic stimulation for “somatotopic” tractography of the corticospinal tract. Neurosurgery 10 Suppl 4:542–554. doi:10.1227/NEU.0000000000000502 discussion 554

    Article  PubMed  Google Scholar 

  54. Berman JI, Berger MS, Mukherjee P, Henry RG (2004) Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101(1):66–72. doi:10.3171/jns.2004.101.1.0066

    Article  PubMed  Google Scholar 

  55. Lu S, Ahn D, Johnson G, Cha S (2003) Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. Am J Neuroradiol 24(5):937–941

    PubMed  Google Scholar 

  56. Akai H, Mori H, Aoki S, Masutani Y, Kawahara N, Shibahara J, Ohtomo K (2005) Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor. J Comput Assist Tomogr 29(1):127–129

    Article  PubMed  Google Scholar 

  57. Heiervang E, Behrens TEJ, Mackay CE, Robson MD, Johansen-Berg H (2006) Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage 33(3):867–877

    Article  CAS  PubMed  Google Scholar 

  58. Catani M (2007) From hodology to function. Brain 130(3):602–605

    Article  PubMed  Google Scholar 

  59. O’Donnell LJ, Pasternak O (2015) Does diffusion MRI tell us anything about the white matter? an overview of methods and pitfalls. Schizophrenia Res 161(1):133–141

    Article  Google Scholar 

  60. O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):185–196

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  62. Nimsky C, Bauer M, Carl B et al (2016) Merits and limits of tractography techniques for the uninitiated advances and technical standards in neurosurgery. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

National Institutes of Health (R21CA156943, P41EB015898, R21NS075728) to A.J.G.; National Institutes of Health (P41EB015902, R01MH074794, R21CA156943, P41EB015898, U01NS083223, U01CA199459, R03NS088301) to L.J.O.; National Institutes of Health (R01MH097979) to Y.R.; National Institutes of Health (P41EB015902, R01MH074794, R01AG042512) to O.P.; The Brain Science Foundation to Y.T.; Oversea Study Program of Guangzhou Elite Project to Z.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra J. Golby or Lauren J. O’Donnell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki 1975, as revised in 2008. The study was approved by the Partners Healthcare Institutional Review Board, and written informed consent was obtained from all subjects prior to participation.

Additional information

Alexandra J. Golby and Lauren J. O’Donnell are senior co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Tie, Y., Olubiyi, O. et al. Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. Int J CARS 11, 1475–1486 (2016). https://doi.org/10.1007/s11548-015-1344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1344-5

Keywords

Navigation