Skip to main content
Log in

Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Flying Ad-Hoc networks (FANET) are the extended paradigm of the mobile Ad-Hoc networks and, perhaps, one of the most emerging research domains in the current era. A huge number of tangible applications have been developed in this domain. The main advantages of such networks are their easy deployment, scalability, and robustness. However, the sparseness of these networks is an inherent characteristic that is known to be a bottleneck. The main objective of this work was to provide an alternative solution for the intermittently connected FANET by considering the philosophy of the Delay Tolerant Network (DTN) approach. To realize the functionality of the DTN protocols in a three-dimensional (3D) space, a social FANET model is proposed. FANET nodes are supposed to have a sparse node density. Fundamentally, the proposed DTN assisted Flying Ad hoc Network exploits the DTN routing and mobility features. The new mobility modeling for 3D spaces was re-engineered and tested with well-known routing protocols to analyze the performance of the model based on node speed, density, buffer, latency, message overhead, and power consumption. The effectiveness of 3D mobility models has also been compared against the one of classical models. The obtained results reflect a significant enhanced performance of the suggested DTN protocol for sparse FANET in a social scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor aerial vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robotics and Automation Magazine, 19(3), 20–32. https://doi.org/10.1109/mra.2012.2206474.

    Google Scholar 

  2. Dey, N., & Mukherjee, A. (2016). Embedded systems and robotics with open source tools. Boca Raton: CRC Press.

    Google Scholar 

  3. Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  4. Kumari, K., Sah, B., & Maakar, S. (2015). A survey: Different mobility model for FANET. International Journal of Advanced Research in Computer Science and Software Engineering, 5(6), 1170–1173.

    Google Scholar 

  5. Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.

    Article  Google Scholar 

  6. Zheng, Z., Sangaiah, A. K., & Wang, T. (2018). Adaptive communication protocols in flying ad hoc network. IEEE Communications Magazine, 56(1), 136–142.

    Article  Google Scholar 

  7. Lewis, M., Templin, F., Bellur, B., & Ogier, R. (2002). Topology broadcast based on reverse-path forwarding (TBRPF). Internet Engineering Task Force (IETF) draft, draft-ietf-manettbrpf-06. txt.

  8. Zhang, X., Cao, X., Yan, L., & Sung, D. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 1, 1.

    Google Scholar 

  9. Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., & Yagoubi, M. B. (2017). A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs). Vehicular Communications, 10, 29–56.

    Article  Google Scholar 

  10. Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93–111.

    Article  Google Scholar 

  11. Singh, H., & Rana, P. S. G. (2017). An emergency message dissemination protocol using greedy forwarding technique and clustering for VANETS. Ph.D. dissertation, 2017.

  12. Cui, B., & Li, R. (2017). A greedy and neighbor aware data forwarding protocol in named data MANETs. In 2017 ninth international conference on ubiquitous and future networks (ICUFN) (pp. 934–939). IEEE, 2017.

  13. Maxa, J.-A., Mahmoud, M.-S. B., & Larrieu, N. (2017). Survey on uaanet routing protocols and network security challenges. Ad Hoc & Sensor Wireless Networks, 37(1–4), 231–320.

    Google Scholar 

  14. Khan, I. L., Hussain, R., Iqbal, A., Shakeel, A., Alvi, S., Abbas, W., et al. (2018). Design and evaluation of self organizing, collision free MAC protocol for distributed cognitive radio networks. Wireless Personal Communications, 99(2), 1081–1101.

    Article  Google Scholar 

  15. Rosário, D., Arnaldo Filho, J., Rosário, D., Santosy, A., & Gerla, M. (2017). A relay placement mechanism based on UAV mobility for satisfactory video transmissions. In Ad hoc networking workshop (Med-Hoc-Net), 2017 16th annual mediterranean (pp. 1–8). IEEE, 2017.

  16. Patra, S., Balaji, A., Saha, S., Mukherjee, A., & Nandi, S. (2011). A qualitative survey on unicast routing algorithms in delay tolerant networks. In V. V. Das, G. Thomas & F. L. Gaol (Eds.), Information technology and mobile communication (pp. 291–296). Berlin: Springer.

    Chapter  Google Scholar 

  17. Salem, A. O. A., Samara, G., & Alhmiedat, T. (2017). Performance analysis of dynamic source routing protocol. arXiv:1712.04622.

  18. Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.

    Article  Google Scholar 

  19. Bujari, A., Palazzi, C. E., & Ronzani, D. (2018). A comparison of stateless position-based packet routing algorithms for FANETs. IEEE Transactions on Mobile Computing, 1, 1.

    Google Scholar 

  20. Amjad, K., & Stocker, A. J. (2010). Impact of node density and mobility on the performance of AODV and DSR in MANETS. In 2010 7th international symposium on communication systems networks and digital signal processing (CSNDSP) (pp. 61–65). IEEE, 2010.

  21. Mukherjee, A., Chakraborty, S., Azar, A. T., Bhattacharyay, S. K., Chatterjee, B., & Dey, N. (2014). Unmanned aerial system for post disaster identification. In 2014 international conference on circuits, communication, control and computing (I4C) (pp. 247–252). IEEE, 2014.

  22. Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing, 21(1), 1–15.

    Google Scholar 

  23. Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., & Zomaya, A. Y. (2017). Mobility-aware service composition in mobile communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 555–568.

    Article  Google Scholar 

  24. Ren, J., Zhang, G., & Li, D. (2017). Multicast capacity for VANETs with directional antenna and delay constraint under random walk mobility model. IEEE Access, 5, 3958–3970.

    Article  Google Scholar 

  25. Mukherjee, A., Dey, N., Kausar, N., Ashour, A. S., Taiar, R., & Hassanien, A. E. (2016). A disaster management specific mobility model for flying ad-hoc network. International Journal of Rough Sets and Data Analysis (IJRSDA), 3(3), 72–103.

    Article  Google Scholar 

  26. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  27. He, R., Ai, B., Stüber, G. L., & Zhong, Z. (2017). Non-stationary mobile-to-mobile channel modeling using the Gauss–Markov mobility model. In 2017 9th international conference on wireless communications and signal processing (WCSP) (pp. 1–6). IEEE, 2017.

  28. Broyles, D., Jabbar, A., & Sterbenz, J. P. G. (2010). Design and analysis of a 3–D Gauss–Markov mobility model for highly-dynamic airborne networks. In Proceedings of the international telemetering conference (ITC), (San Diego, CA). 2010.

  29. Li, X., Zhang, T., & Li, J. (2017). A particle swarm mobility model for flying ad hoc networks. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6). IEEE, 2017.

  30. Li, X., & Zhang, T. (2016). STGM: A spatiotemporally correlated group mobility model for flying ad hoc networks. In International conference on communications and networking in China (pp. 391–400). Cham: Springer, 2016.

  31. Bouachir, O., Abrassart, A., Garcia, F., & Larrieu, N. (2014). A mobility model for UAV ad hoc network. In 2014 international conference on unmanned aircraft systems (ICUAS) (pp. 383–388). IEEE, 2014.

  32. Radu, D., Cretu, A., Parrein, B., Yi, J., Avram, C., & Aştilean, A. (2018). Flying ad hoc network for emergency applications connected to a fog system. In International conference on emerging internetworking, data & web technologies (pp. 675–686). Cham: Springer, 2018.

  33. Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700.

    Article  Google Scholar 

  34. Le, M., Park, J.-S., & Gerla, M. (2006). UAV assisted disruption tolerant routing. In Military communications conference, 2006. MILCOM 2006. IEEE (pp. 1–5). IEEE, 2006.

  35. Messous, M.-A., Senouci, S.-M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6). IEEE, 2016.

  36. Zacarias, I., Gaspary, L. P., Kohl, A., Fernandes, R. Q., Stocchero, J. M., & de Freitas, E. P. (2017). Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Communications Magazine, 55(10), 22–29.

    Article  Google Scholar 

  37. Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129–148.

    Article  Google Scholar 

  38. Karmakar, G., Kamruzzaman, J., & Nowsheen, N. (2018). An efficient data delivery mechanism for AUV-based Ad hoc UASNs. Future Generation Computer Systems, 86, 1193–1208.

    Article  Google Scholar 

  39. Kerrache, C. A., Barka, E., Lagraa, N., & Lakas, A. (2017). Reputation-aware energy-efficient solution for FANET monitoring. In Wireless and mobile networking conference (WMNC), 2017 10th IFIP (pp. 1–6). IEEE, 2017.

  40. De Vit, A. R. D., Marcon, C., Nunes, R. C., Webber, T., Sanchez, G., & Rolim, C. O. (2018). Energy saving on DTN using trajectory inference model. In Proceedings of the 33rd annual ACM symposium on applied computing (pp. 2132–2135). ACM, 2018.

  41. Zhou, H., Leung, V. C., Zhu, C., Xu, S., & Fan, J. (2017). Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Transactions on Vehicular Technology, 66(11), 10372–10383.

    Article  Google Scholar 

  42. Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.

    Article  MATH  Google Scholar 

  44. Lindgren, A., Doria, A., Davies, E., & Grasic, S. (2012). Probabilistic routing protocol for intermittently connected networks. No. RFC 6693. 2012.

  45. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM, 2005.

  46. Burgess, J., Gallagher, B., Jensen, D. D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. proceedings (pp. 1–11). IEEE, 2006.

  47. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  48. González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.

    Article  Google Scholar 

  49. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.

  50. Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2016). A performance comparison of delay-tolerant network routing protocols. IEEE Network, 30(2), 46–53.

    Article  Google Scholar 

  51. Cabacas, R. A., Nakamura, H., & Ra, I.-H. (2014). Energy consumption analysis of delay tolerant network routing protocols. International Journal of Software Engineering and Its Applications, 8(2), 1–10.

    Google Scholar 

  52. Ahmad, K., Fathima, M., Jain, V., & Fathima, A. (2017). FUZZY-Prophet: A novel routing protocol for opportunistic network. International Journal of Information Technology, 9(2), 121–127.

    Article  Google Scholar 

  53. Ferreira, D. L., Nunes, B. A. A., & Obraczka, K. (2018). Scale-free properties of human mobility and applications to intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3736–3748.

    Article  Google Scholar 

  54. Basta, N., ElNahas, A., Grossmann, H. P., & Abdennadher, S. (2018). Guess where I go?: A mobility predictor for smart vehicles. In Proceedings of the 17th international conference on mobile and ubiquitous multimedia (pp. 93–102). ACM, 2018.

  55. Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amartya Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Dey, N., Kumar, R. et al. Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective. Wireless Netw 25, 2675–2695 (2019). https://doi.org/10.1007/s11276-019-01987-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01987-8

Keywords

Navigation