Skip to main content

Advertisement

Log in

Priority-based capacity and power allocation in co-located WBANs using Stackelberg and bargaining games

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To mitigate the interference in co-located wireless body area networks (WBANs), this paper proposes an inter-WBAN priority-based capacity allocation scheme based on the Nash bargaining game, and an intra-WBAN priority-based power control scheme based on the Stackelberg game. Moreover, under the network capacity imposed by the Nash bargaining solution, two pricing mechanisms: non-uniform pricing and uniform pricing, are introduced in the Stackelberg game and the Stackelberg equilibrium under each mechanism is achieved analytically. Additionally, owing to the special features of WBANs, the players priorities indicated by exigency of the sensed data and the energy consumption of sensors are considered in the design of utility functions. Extensive simulations show that the proposed schemes are energy efficient and can improve the network quality of service in terms of real time and reliability of critical data transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cavallari R, Martelli F, Rosini R, Buratti C, Verdone R (2014) A survey on wireless body area networks: technologies and design challenges. IEEE Commun Surv Tutor 16(3):1635–1657

    Article  Google Scholar 

  2. Movassaghi S, Abolhasan M, Lipman J, Smith D, Jamalipour A (2014) Wireless body area networks: a survey. IEEE Commun Surv Tutor 16(3):1658–1686

    Article  Google Scholar 

  3. Islam S-R, Kwak D, Kabir M-H, Hossain M, Kwak K-S (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708

    Article  Google Scholar 

  4. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

    Article  Google Scholar 

  5. de Silva B, Natarajan A, Motani M (2009) Inter-user interference in body sensor networks: preliminary investigation and an infrastructure-based solution. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, USA, pp 35–40

  6. Kim E-J, Youm S, Shon T, Kang C-H (2013) Asynchronous inter-network interference avoidance for wireless body area networks. J Supercomput 65(2):562–579

    Article  Google Scholar 

  7. Salayma M, Al-Dubai A, Romdhani I, Nasser Y (2017) Wireless body area network (WBAN): a survey on reliability, fault tolerance, and technologies coexistence. ACM Comput Surv 50(1):3

    Article  Google Scholar 

  8. Le T-T, Moh S (2015) Interference mitigation schemes for wireless body area sensor networks: a comparative survey. Sensors 15(6):13805–13838

    Article  Google Scholar 

  9. Fang G, Dutkiewicz E, Yu K, Vesilo R, Yu Y (2010) Distributed inter-network interference coordination for wireless body area networks. In: 2010 IEEE In Global Telecommunications Conference (GLOBECOM), Florida, USA, pp 1–5

  10. Kazemi R, Vesilo R, Dutkiewicz E, Fang G (2010) Inter-network interference mitigation in wireless body area networks using power control games. In: 2010 International Symposium on Communications and Information Technologies (ISCIT), Tokyo, Japan, pp 81–86

  11. Zou L, Liu B, Chen C, Chen C-W (2014) Bayesian game based power control scheme for inter-WBAN interference mitigation. In: 2014 IEEE In Global Communications Conference (GLOBECOM), TX, USA, pp 240–245

  12. Meharouech A, Elias J, Paris S, Mehaoua A (2015) A game theoretical approach for interference mitigation in body-to-body networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, pp 259–264

  13. Meharouech A, Elias J, Mehaoua A (2016) A two-stage game theoretical approach for interference mitigation in body-to-body networks. Comput Netw 95:15–34

    Article  Google Scholar 

  14. Elias J, Paris S, Krunz M (2015) Cross-technology interference mitigation in body area networks: an optimization approach. IEEE Trans Veh Technol 64(9):4144–4157

    Article  Google Scholar 

  15. Cheng S-H, Huang C-Y (2013) Coloring-based inter-WBAN scheduling for mobile wireless body area networks. IEEE Trans Parallel Distrib Syst 24(2):250–259

    Article  MathSciNet  Google Scholar 

  16. Movassaghi S, Abolhasan M, Smith D, Jamalipour A (2014) AIM: Adaptive internetwork interference mitigation amongst co-existing wireless body area networks. In: 2014 IEEE In Global Communications Conference (GLOBECOM), TX, USA, pp 2460–2465

  17. Seo S, Bang H, Lee H (2016) Coloring-based scheduling for interactive game application with wireless body area networks. J Supercomput 72(1):185–195

    Article  Google Scholar 

  18. Misra S, Sarkar S (2015) Priority-based time-slot allocation in wireless body area networks during medical emergency situations: an evolutionary game-theoretic perspective. IEEE J Biomed Health Inform 19(2):541–548

    Article  Google Scholar 

  19. Misra S, Moulik S, Chao H-C (2015) A cooperative bargaining solution for priority-based data-rate tuning in a wireless body area network. IEEE Trans Wirel Commun 14(5):2769–2777

    Article  Google Scholar 

  20. Yi C, Zhao Z, Cai J, de Faria R-L, Zhang G-M (2016) Priority-aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Comput Netw 98:29–43

    Article  Google Scholar 

  21. Kazemi R, Vesilo R, Dutkiewicz E, Liu R-P (2012) Reinforcement learning in power control games for internetwork interference mitigation in wireless body area networks. In: 2012 International Symposium on Communications and Information Technologies (ISCIT), Gold Coast, Australia, pp 256–262

  22. Zhao X, Liu B, Chen C, Chen C-W (2015) QoS-driven power control for inter-WBAN interference mitigation. In: 2015 IEEE In Global Communications Conference (GLOBECOM), CA, USA, pp 1–6

  23. Zhang Z, Wang H, Wang C, Fang H (2013) Interference mitigation for cyber-physical wireless body area network system using social networks. IEEE Trans Emerg Top Comput 1(1):121–132

    Article  Google Scholar 

  24. Wang J-X, Sun Y-M, Ji Y-F (2017) QoS-based adaptive power control scheme for co-located WBANs: a cooperative bargaining game theoretic perspective. Wirel Netw. https://doi.org/10.1007/s11276-017-1521-2

  25. Yang C-G, Li J-D, Tian Z (2010) Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Trans Veh Technol 59(4):1696–1706

    Article  Google Scholar 

  26. Azimi S-M, Manshaei M-H, Hendessi F (2016) Cooperative primary-secondary dynamic spectrum leasing game via decentralized bargaining. Wirel Netw 22(3):755–764

    Article  Google Scholar 

  27. Zhang H, Jiang C, Beaulieu N-C, Chu X, Wang X, Quek T-Q (2015) Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans Wirel Commun 14(6):3481–3493

    Article  Google Scholar 

  28. Ni Q, Zarakovitis C-C (2012) Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE J Sel Areas Commun 30(1):70–81

    Article  Google Scholar 

  29. Zhang Z, Shi J, Chen H-H, Guizani M, Qiu P (2008) A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Trans Veh Technol 57(4):2570–2577

    Article  Google Scholar 

  30. Zhang G, Zhang H, Zhao L, Wang W, Cong L (2009) Fair resource sharing for cooperative relay networks using Nash bargaining solutions. IEEE Commun Lett 13(6):381–383

    Article  Google Scholar 

  31. Han Z, Ji Z, Liu K-R (2005) Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions. IEEE Trans Commun 53(8):1366–1376

    Article  Google Scholar 

  32. Wang G, Liu T (2016) Resource allocation for M2M-enabled cellular network using Nash bargaining game theory. Peer-to-Peer Netw Appl 11(1):110–123

    Article  Google Scholar 

  33. Kim S (2016) Timed bargaining-based opportunistic routing model for dynamic vehicular ad hoc network. EURASIP J Wirel Commun Netw 2016(1):14

    Article  Google Scholar 

  34. Xu P, Fang X, Chen M, Xu Y (2013) A Stackelberg game-based spectrum allocation scheme in macro/femtocell hierarchical networks. Comput Commun 36(14):1552–1558

    Article  Google Scholar 

  35. Duong N-D, Madhukumar A-S, Niyato D (2016) Stackelberg Bayesian game for power allocation in two-tier networks. IEEE Trans Veh Technol 65(4):2341–2354

    Article  Google Scholar 

  36. Kang X, Zhang R, Motani M (2012) Price-based resource allocation for spectrum-sharing femtocell networks: a Stackelberg game approach. IEEE J Sel Areas Commun 30(3):538–549

    Article  Google Scholar 

  37. Ren S, Van der Schaar M (2011) Pricing and distributed power control in wireless relay networks. IEEE Trans Signal Process 59(6):2913–2926

    Article  MathSciNet  Google Scholar 

  38. Wang B, Han Z, Liu K-R (2009) Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game. IEEE Trans Mob Comput 8(7):975–990

    Article  Google Scholar 

  39. Cao Q, Zhao H-V, Jing Y (2012) Power allocation and pricing in multiuser relay networks using Stackelberg and bargaining games. IEEE Trans Veh Technol 61(7):3177–3190

    Article  Google Scholar 

  40. Kang X, Wu Y (2015) Incentive mechanism design for heterogeneous peer-to-peer networks: a Stackelberg game approach. IEEE Trans Mob Comput 14(5):1018–1030

    Article  Google Scholar 

  41. Sun S, Chen N, Ran T, Xiao J, Tian T (2016) A Stackelberg game spectrum sharing scheme in cognitive radio-based heterogeneous wireless sensor networks. Signal Process 126:18–26

    Article  Google Scholar 

  42. Xu Y, Mao S (2014) Stackelberg game for cognitive radio networks with MIMO and distributed interference alignment. IEEE Trans Veh Technol 63(2):879–892

    Article  MathSciNet  Google Scholar 

  43. Maharjan S, Zhu Q, Zhang Y, Gjessing S, Basar T (2013) Dependable demand response management in the smart grid: a Stackelberg game approach. IEEE Trans Smart Grid 4(1):120–132

    Article  Google Scholar 

  44. Gong X-W, Duan L-J, Chen X, Zhang J-S (2017) When social network effect meets congestion effect in wireless networks: data usage equilibrium and optimal pricing. IEEE J Sel Areas Commun 35(2):449–462

    Article  Google Scholar 

  45. Han Z, Niyato D, Basar T, Saad W, Hjørungnes A (2012) Game theory in wireless and communication networks. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  46. Nash J-F Jr (1950) The bargaining problem. Econometrica 18(2):155–162

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang C-G, Li J-D, Anpalagan A, Guizani M (2016) Joint power coordination for spectral-and-energy efficiency in heterogeneous small cell networks: a bargaining game-theoretic perspective. IEEE Trans Wirel Commun 15(2):1364–1376

    Article  Google Scholar 

  48. Abiodun A-S, Anisi M-H, Ali I, Akhunzada A, Khan M-K (2017) Reducing power consumption in wireless body area networks: a novel data segregation and classification technique. IEEE Consum Electron Mag 6(4):38–47

    Article  Google Scholar 

  49. Kelly F (1997) Charging and rate control for elastic traffic. Trans Emerg Telecommun Technol 8(1):33–37

    Article  Google Scholar 

  50. Moosavi H, Bui F-M (2016) Optimal beamforming-based power control in wireless body area networks. In: 2016 Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 1–5

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 61372118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Sun.

Appendix

Appendix

1.1 A. Proof of Proposition 4.1

Obviously, Problem 4.2 is a convex optimization problem, which can be solved using the Lagrange Multiplier approach. The Lagrange function is given by

$$\begin{aligned} L\left( {{\mathbf{S}},{\varvec{\alpha }},\beta } \right) = \sum \limits _{i = 1}^N {{w_i} \cdot \ln ({S_i} - S_i^{\min })} + \sum \limits _{i = 1}^N {{\alpha _i} \cdot ({S_i} - S_i^{\min })} + \beta \cdot \left( C - \sum \limits _{i = 1}^N {{S_i}}\right) \end{aligned}$$
(31)

Then, the KKT conditions can be written as follows:

$$\begin{aligned} \frac{{\partial L({\mathbf{S}},{\varvec{\alpha }},\beta )}}{{\partial {S_i}}}= & {} 0, \quad \forall i \end{aligned}$$
(32)
$$\begin{aligned} {\alpha _i} \cdot ({S_i} - S_{\min }^i)= & {} 0, \quad \forall i \end{aligned}$$
(33)
$$\begin{aligned} \beta \cdot \left( C - \sum \limits _{i = 1}^N {{S_i}}\right)= & {} 0 \end{aligned}$$
(34)
$$\begin{aligned} {\alpha _i} \ge 0,\mathrm{{ }}\beta \ge 0,\mathrm{{ }}{S_i}\ge & {} S_i^{\min }, \quad \forall i \end{aligned}$$
(35)
$$\begin{aligned} \sum \limits _{i = 1}^N {{S_i}}\le & {} C \end{aligned}$$
(36)

From formulas (31) and (32), we have

$$\begin{aligned} \frac{{\partial L({\mathbf{S}},{\varvec{\alpha }},\beta )}}{{\partial {S_i}}} = \frac{{{w_i}}}{{{S_i} - S_i^{\min }}} + {\alpha _i} - \beta = 0, \quad \forall i \end{aligned}$$
(37)

Thus, the following solution can be obtained

$$\begin{aligned} {S_i} = \frac{{{w_i}}}{{\beta - {\alpha _i}}} + S_i^{\min },\quad \forall i \end{aligned}$$
(38)

Lemma 1

\({\alpha _i} = 0, \quad \forall i\)

Proof

Suppose that \({\alpha _i} \ne 0\) for some i. it can be deduced from formula (33) that \({S_i} = S_i^{\min }\), which contradicts the meaning of cooperative game and formula (37). Therefore, the assumption that \({\alpha _i} \ne 0\) for some i doesn’t hold, and we have \({\alpha _i} = 0, \ \forall i\). \(\square \)

Lemma 2

\(\sum \limits _{i = 1}^N {{S_i}} = C\)

Proof

Suppose that \(\sum _{i = 1}^N {{S_i}} \ne C\), according to formula (34), we have \(\beta = 0\). Further, it has been proved in Lemma 1 that \({\alpha _i} = 0, \ \forall i\). Then, it can be seen that the equation in formula (37) isn’t true in this case. Thus, the assumption doesn’t hold and we have \(\sum _{i = 1}^N {{S_i}} = C\).

According to Lemmas 1 and 2, it can be computed that \(\beta = {\left( {\sum _{i = 1}^N {{w_i}} } \right) } \bigg /{\left( {C - \sum _{i = 1}^N {S_i^{\min }} } \right) }\). Substituting it into formula (38), we have

$$\begin{aligned} {S_i} = \frac{{{w_i} \cdot \left( {C - \sum _{i = 1}^N {S_i^{\min }} } \right) }}{{\sum _{i = 1}^N {{w_i}} }} + S_i^{\min },\quad \forall i \end{aligned}$$

Proposition 4.1 is thus proved. \(\square \)

1.2 B. Proof of Proposition 5.1

The first- and second-order partial derivatives of \({U_k^i}\) with respect to \({p_k^i}\) are given as

$$\begin{aligned} \frac{{\partial U_k^i}}{{\partial p_k^i}}= & {} \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot p_k^i)}} - c_k^i \end{aligned}$$
(39)
$$\begin{aligned} \frac{{{\partial ^2}U_k^i}}{{\partial p{{_k^i}^2}}}= & {} - \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h{{_k^i}^2}}}{{\ln 2 \cdot {{({\sigma ^2} + h_k^i \cdot p_k^i)}^2}}} \end{aligned}$$
(40)

As \(\lambda _k^i > 0\) and \(\vartheta _k^i \ge 0\), it can be obtained that \(\frac{{{\partial ^2}U_k^i}}{{\partial p{{_k^i}^2}}} \le 0\) Thus, \({U_k^i}\) is a concave function of \({p_k^i}\). We can get the optimal solution of Problem 5.1 by setting \(\frac{{\partial U_k^i}}{{\partial p_k^i}} = 0\), i.e., \(p_k^i = \frac{{\lambda _k^i \cdot \vartheta _k^i}}{{\ln 2 \cdot c_k^i}} - \frac{{{\sigma ^2}}}{{h_k^i}}\). Due to the limited energy, sensor nodes active under the constraint of maximum feasible transmission power \({P_{\max }}\), i.e., \(p_k^i = \left( {\frac{{\lambda _k^i \cdot \vartheta _k^i}}{{\ln 2 \cdot c_k^i}} - \frac{{{\sigma ^2}}}{{h_k^i}}} \right) _0^{{P_{\max }}}\). Therefore, we can get

$$\begin{aligned} p{{_k^i}^ * } = \left\{ \begin{array}{l} 0, \quad \mathrm{{ }}c_k^i \ge \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}}\mathrm{{ }} \\ \\ \frac{{\lambda _k^i \cdot \vartheta _k^i}}{{\ln 2 \cdot c_k^i}} - \frac{{{\sigma ^2}}}{{h_k^i}}, \quad \mathrm{{ }}\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}}< c_k^i < \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}} \\ \\ {P_{\max }}, \quad \mathrm{{ }}c_k^i \le \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}}\mathrm{{ }} \\ \end{array} \right. \end{aligned}$$

The solution can also be obtained using the Lagrange Multiplier approach, which is similar to part A of appendix, and it is omitted here. Thus, Proposition 5.1 is proved.

1.3 C. Proof of Proposition 5.2

Problem 5.3 is a convex optimization problem and can be solved using the Lagrange Multiplier method. The Lagrange function is given by

$$\begin{aligned} \begin{array}{l} L({{\mathbf{c}}_k},\alpha ,\varvec{\beta } ,\varvec{\gamma } )= \sum \limits _{i = 1}^m {\left( {\frac{{\lambda _k^i \cdot \vartheta _k^i}}{{\ln 2}} - \frac{{{\sigma ^2}}}{{h_k^i}} \cdot c_k^i} \right) } - \alpha \cdot \left[ {\sum \limits _{i = 1}^m {B_k^i \cdot {{\log }_2}\left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2} \cdot c_k^i}}} \right) } - {S_k}} \right] \\ \\ \quad \mathrm{{ }} - \sum \limits _{i = 1}^m {{\beta _i}} \cdot \left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}} - c_k^i} \right) - \sum \limits _{i = 1}^m {{\gamma _i}} \cdot \left( {c_k^i - \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}}} \right) \\ \end{array} \end{aligned}$$
(41)

Then, the KKT conditions can be written as follows:

$$\begin{aligned}&\frac{{\partial L}}{{\partial c_k^i}} = 0 \end{aligned}$$
(42)
$$\begin{aligned}&\sum \limits _{i = 1}^m {B_k^i \cdot {{\log }_2}\left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2} \cdot c_k^i}}} \right) } \le {S_k}\end{aligned}$$
(43)
$$\begin{aligned}&\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}} < c_k^i,\quad \forall i\end{aligned}$$
(44)
$$\begin{aligned}&c_k^i < \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}},\quad \forall i\end{aligned}$$
(45)
$$\begin{aligned}&{\beta _i} \cdot \left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}} - c_k^i} \right) = 0,\quad \forall i\end{aligned}$$
(46)
$$\begin{aligned}&{\gamma _i} \cdot \left( {c_k^i - \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}}} \right) = 0,\quad \forall i\end{aligned}$$
(47)
$$\begin{aligned}&\alpha \cdot \left[ {\sum \limits _{i = 1}^m {B_k^i \cdot {{\log }_2}\left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2} \cdot c_k^i}}} \right) } - {S_k}} \right] = 0 \end{aligned}$$
(48)

From formulas (44)–(47), it can be seen that \({\beta _i} = {\gamma _i} = 0,\forall i\). Since \(\frac{{\partial L}}{{\partial c_k^i}} = - \frac{{{\sigma ^2}}}{{h_k^i}} + {\beta _i} - {\gamma _i} + \frac{{\alpha \cdot B}}{{\ln 2 \cdot c_k^i}} = 0\) , it can be obtained that

$$\begin{aligned} c_k^i = \frac{{\alpha \cdot B \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}}, \quad \forall i \end{aligned}$$
(49)

From formulas (48) and (49), it can be deduced that

$$\begin{aligned} \sum \limits _{i = 1}^m {B_k^i \cdot {{\log }_2}\left( {\frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2} \cdot c_k^i}}} \right) } = {S_k} \end{aligned}$$
(50)

Substituting (49) into (50), we can get that

$$\begin{aligned} \alpha \mathrm{{ = }}{\left( {\frac{{\prod _{i = 1}^m {\frac{{\lambda _k^i \cdot \vartheta _k^i}}{B}} }}{{{2^{{{{S_k}}/ B}}}}}} \right) ^{\frac{1}{m}}} \end{aligned}$$
(51)

Substituting (51) into (49), the price strategy can be obtained as follows:

$$\begin{aligned} c{{_k^i}^ * } = \frac{{{{\left( {\prod _{i = 1}^m {\lambda _k^i \cdot \vartheta _k^i} } \right) }^{\frac{1}{m}}} \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2} \cdot {2^{\frac{{{S_k}}}{{B \cdot m}}}}}}, \quad \forall i \end{aligned}$$

Proposition 5.2 is proved.

1.4 D. Proof of Proposition 5.3.

It is observed that the solution in (19) is the optimal solution of Problem 5.3 if the following condition is satisfied:

$$\begin{aligned} \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot ({\sigma ^2} + h_k^i \cdot {P_{\max }})}}< c_k^i < \frac{{\lambda _k^i \cdot \vartheta _k^i \cdot h_k^i}}{{\ln 2 \cdot {\sigma ^2}}}, \quad \forall i. \end{aligned}$$

Substituting (19) into these inequalities, it can be deduced that

$$\begin{aligned} {S_k} > B \cdot m \cdot {\log _2}\frac{{{A_m}}}{{\lambda _k^i \cdot \vartheta _k^i}}, \quad \forall i \end{aligned}$$

and

$$\begin{aligned} {S_k} < B \cdot m \cdot {\log _2}\left[ {\frac{{{A_m}}}{{\lambda _k^i \cdot \vartheta _k^i}} \cdot \left( {1 + \frac{{{P_{\max }} \cdot h_k^i}}{{{\sigma ^2}}}} \right) } \right] , \quad \forall i. \end{aligned}$$

These inequalities can be transformed as formulas (20) and (21) compactly, respectively. Thus, Proposition 5.3 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, Y. & Ji, Y. Priority-based capacity and power allocation in co-located WBANs using Stackelberg and bargaining games. J Supercomput 74, 3114–3147 (2018). https://doi.org/10.1007/s11227-018-2364-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2364-z

Keywords

Navigation