Skip to main content
Log in

Normality, Non-contamination and Logical Depth in Classical Natural Deduction

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we provide a detailed proof-theoretical analysis of a natural deduction system for classical propositional logic that (i) represents classical proofs in a more natural way than standard Gentzen-style natural deduction, (ii) admits of a simple normalization procedure such that normal proofs enjoy the Weak Subformula Property, (iii) provides the means to prove a Non-contamination Property of normal proofs that is not satisfied by normal proofs in the Gentzen tradition and is useful for applications, especially in formal argumentation, (iv) naturally leads to defining a notion of depth of a proof, to the effect that, for every fixed natural k, normal k-depth deducibility is a tractable problem and converges to classical deducibility as k tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschieri, F., A. Ciabattoni, and F.A. Genco, Classical proofs as parallel programs, in A. Orlandini, and M. Zimmermann, (eds.), Proceedings of the 9th Symposium on Games, Automata, Logics and Formal Verification (GandALF’18), vol. 277 of EPTCS, 2018, pp. 43–57.

  2. Bench-Capon, T.J.M., and P.E. Dunne, Argumentation in artificial intelligence. Artificial intelligence 171:10–15, 2007.

    Google Scholar 

  3. Bendall, K., Natural deduction, separation and the meaning of logical operators. Journal of Philosophical Logic 7:245–276, 1978.

    Article  Google Scholar 

  4. Bennett, J., Entailment. The Philosophical Review 78:197–236, 1969.

    Article  Google Scholar 

  5. Caminada, M., and L. Amgoud, On the evaluation of argumentation formalisms. Artificial Intelligence 171(5-6):286–310, 2007.

    Article  Google Scholar 

  6. Caminada, M., W. Carnielli, and P. Dunne, Semi-stable semantics. Journal of Logic and Computation 22(5):1207–1254, 2012.

    Article  Google Scholar 

  7. D’Agostino, M., Investigations into the Complexity of some Propositional calculi. Oxford University Computing Laboratory, Oxford, 1990.

    Google Scholar 

  8. D’Agostino, M., Are tableaux an improvement on truth tables? Cut-free proofs and bivalence. Journal of Logic, Language and Information 1:235–252, 1992.

    Article  Google Scholar 

  9. D’Agostino, M., Tableau methods for classical propositional logic, in M. D’Agostino, D.M. Gabbay, R. Hähnle, and J. Posegga, (eds.), Handbook of Tableau Methods, Kluwer Academic Publishers, Dordrecht, 1999, pp. 45–123.

    Chapter  Google Scholar 

  10. D’Agostino, M., Classical natural deduction, in S.N. Artëmov, H. Barringer, A.S. d’Avila Garceza, L.C. Lamb, and J. Woods, (eds.), We Will Show Them!, vol. 1, College Publications, London, 2005, pp. 429–468.

    Google Scholar 

  11. D’Agostino, M., Analytic inference and the informational meaning of the logical operators. Logique et Analyse 227:407–437, 2014.

    Google Scholar 

  12. D’Agostino, M., An informational view of classical logic. Theoretical Computer Science 606:79–97, 2015.

    Article  Google Scholar 

  13. D’Agostino, M., M. Finger, and D.M. Gabbay, Semantics and proof-theory of Depth-Bounded Boolean Logics. Theoretical Computer Science 480:43–68, 2013.

    Article  Google Scholar 

  14. D’Agostino, M., and L. Floridi, The enduring scandal of deduction. Is propositional logic really uninformative? Synthese 167(2):271–315, 2009.

    Article  Google Scholar 

  15. D’Agostino, M., and S. Modgil, A rational account of classical logic argumentation for real-world agents, in Proceedings of European Conference on Artificial Intelligence (ECAI’16), IOS Press, 2016, pp. 141–149.

  16. D’Agostino, M., and S. Modgil, Classical logic, argument and dialectic. Artificial Intelligence 262:15–51, 2018.

    Article  Google Scholar 

  17. D’Agostino, M., and M. Mondadori, The taming of the cut. Classical refutations with analytic cut. Journal of Logic and Computation 4(3):285–319, 1994.

    Article  Google Scholar 

  18. Dummett, M., The logical basis of metaphysics. Duckworth, London, 1991.

    Google Scholar 

  19. Dung, P.M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2):321–358, 1995.

    Article  Google Scholar 

  20. Ferrari, M., and C. Fiorentini, Proof search in natural deduction calculus for classical propositional logic, in H. De Nivelle, (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, number 9323 in Lecture Notes in Artificial Intelligence, Berlin, Springer, 2015, pp. 237–252.

  21. Ferreira, F., The coordination principle. A problem for bilateralism. Mind 117:1051–1057, 2008.

    Google Scholar 

  22. Fitch, F.B., Symbolic Logic: an Introduction. The Ronald Press Company, New York, 1952.

    Google Scholar 

  23. Gabbay, M., Bilateralism does not provide a proof theoretic treatment of classical logic (for technical reasons). Journal of Applied Logic 25:s108–s122, 2017.

    Article  Google Scholar 

  24. Gentzen, G., Unstersuchungen über das logische Schliessen. Math. Zeitschrift, 39:176–210, 1935. English translation in Szabo [1969].

  25. Hazen, A.P., and F.J. Pelletier, Gentzen and Jaśkowski natural deduction: fundamentally similar but importantly different. Studia Logica 102:1–40, 2014.

    Article  Google Scholar 

  26. Hintikka, J., Logic, Language Games and Information: Kantian Themes in the Philosophy of Logic. Oxford University Press, Oxford, 1972.

    Google Scholar 

  27. Humberstone, L., The revival of rejective negation. Journal of Philosophical Logic 29:331–381, 2000.

    Article  Google Scholar 

  28. Indrzejczak, A., Natural Deduction, Hybrid Systems and Modal Logics. Trends in Logic 30. Springer, Dordrecht, 1 edition, 2010.

  29. Kakas, A., P. Mancarella, and F. Toni, On argumentation logic and propositional logic. Studia Logica 106:237–279, 2018.

    Article  Google Scholar 

  30. Kleene, S.C., Mathematical Logic. John Wiley & Sons, Inc., New York, 1967.

    Google Scholar 

  31. Makinson, D., On an inferential semantics for classical logic. Logic Journal of IGPL 22:147–154, 2013.

    Article  Google Scholar 

  32. Maretić, M., On multiple conclusion deductions in classical logic. Mathematical Communications 23:79–95, 2018.

    Google Scholar 

  33. Modgil, S., and H. Prakken. A general account of argumentation and preferences. Artificial Intelligence 195(0):361–397, 2013.

    Article  Google Scholar 

  34. Modgil, S., F. Toni, F. Bex, I. Bratko, C.I. Chesnevar, X. Fan, S. Gaggl, A.J. Garcia, M.P. Gonzalez, T. Gordon, J. Leite, M. Mozina, C. Reed, G.R. Simari, S. Szeider, P. Torroni, and S. Woltran, The added value of argumentation: Examples and challenges, in S. Ossowski, (ed.), Chapter 21 in Handbook of Agreement Technologies. Springer, New York, 2013.

    Google Scholar 

  35. Mondadori, M., Classical analytical deduction. Annali dell’Università di Ferrara; Sez. III; Discussion paper 1, Università di Ferrara, 1988.

  36. Mondadori, M., On the notion of a classical proof. In Temi e prospettive della logica e della filosofia della scienza contemporanee, volume I, Bologna, CLUEB, 1988 pp. 211–224.

  37. Mondadori, M., An improvement of Jeffrey’s deductive trees. Annali dell’Università di Ferrara; Sez. III; Discussion paper 7, Università di Ferrara, 1989.

  38. Mondadori, M., Efficient inverse tableaux. Logic Journal of the IGPL 3(6):939–953, 1995.

    Article  Google Scholar 

  39. Negri, S., and J. von Plato, Structural Proof Theory. Cambridge University Press, New York, 2001.

    Book  Google Scholar 

  40. Pelletier, F.J., and A.P. Hazen, A history of natural deduction, in D.M. Gabbay, J.F. Pelletier, and J. Woods, (eds.), Handbook of the History of Logic, volume 11: Logic. A History of its Central Concepts. Elsevier, Amsterdam, 2012.

  41. Prawitz, D. Natural Deduction. A Proof-Theoretical Study. Almqvist & Wilksell, Uppsala, 1965.

    Google Scholar 

  42. Quine, W.V.O., The Roots of Reference. Open Court, La Salle, Illinois, 1973.

    Google Scholar 

  43. Raggio, A., Gentzen’s Hauptsatz for the systems NI and NK. Logique et Analyse 8:91–100, 1965.

    Google Scholar 

  44. Rumfit, I., “Yes” and “No”. Mind 109:781–823, 2000.

    Article  Google Scholar 

  45. Sandqvist, T., Classical logic without bivalence. Analysis 69:211–218, 2009.

    Article  Google Scholar 

  46. Sieg, W., and F. Pfenning, (eds.), Special Issue of Studia Logica on Automated Natural Deduction, vol. 60, 1998.

  47. Smiley, T., Rejection. Analysis 56:1–9, 1996.

    Article  Google Scholar 

  48. Smullyan, R., Analytic natural deduction. Journal of Symbolic Logic 30(2):123–139, 1965.

    Article  Google Scholar 

  49. Smullyan, R., First-Order Logic. Springer, Berlin, 1968.

    Book  Google Scholar 

  50. Statman, R., Structural Complexity of Proofs. Ph.D. thesis, University of Stanford, 1974.

  51. Stålmarck, G., Normalization theorems for full first order classical natural deduction. The Journal of Symbolic Logic 56:129–149, 1991.

    Article  Google Scholar 

  52. Szabo, M., (ed.), The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam, 1969.

    Google Scholar 

  53. Tennant, N., Perfect validity, entailment and paraconsistency. Studia Logica XLIII:179–198, 1984.

    Google Scholar 

  54. Tennant, N., Natural deduction and sequent calculus for intuitionistic relevant logic. Journal of Symbolic Logic 52(3):665–680, 1987.

    Article  Google Scholar 

  55. Tennant, N., Natural Logic. Edinburgh University Press, Edinburgh, 1990.

    Google Scholar 

  56. Tennant, N., Autologic. Edinburgh University Press, Edinburgh, 1992.

    Google Scholar 

  57. Urquhart, A., The complexity of propositional proofs. Bulletin of Symbolic Logic 1 (4):425–467, 1995.

    Article  Google Scholar 

  58. von Plato, J., Gentzen’s proof of normalization for natural deduction. Bulletin of Symbolic Logic 14(2):240–257, 2008.

    Article  Google Scholar 

  59. von Plato, J., and A. Siders, Normal derivability in classical natural deduction. The Review of Symbolic Logic 5:205–211, 2012.

    Article  Google Scholar 

  60. Wansing, H., Prawitz, proofs and meaning, in H. Wansing, (ed.), Dag Prawitz on Proofs and Meaning, Springer, New York, 2015, pp. 1–32.

    Google Scholar 

Download references

Acknowledgements

We wish to thank three anonymous referees for the very close reading, many interesting comments and important corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello D’Agostino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by David Makinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Agostino, M., Gabbay, D. & Modgil, S. Normality, Non-contamination and Logical Depth in Classical Natural Deduction. Stud Logica 108, 291–357 (2020). https://doi.org/10.1007/s11225-019-09847-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-019-09847-4

Keywords

Navigation