Skip to main content
Log in

Multi-party quantum secret sharing with the single-particle quantum state to encode the information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a three-party quantum secret sharing (QSS) scheme via the entangled Greenberger–Horne–Zeilinger state. In this scheme, the sender Alice encodes her arbitrary secret information by means of preparing a single-particle quantum state. The agent Bob obtains his shared information according to his hobby, while Charlie can easily calculate his shared information. The proposed scheme is secure. It is shown that even a dishonest agent, who may avoid the security checking, cannot obtain any useful information. Moreover, we further investigate the multi-party QSS scheme which allows most agents to predetermine their information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. Chen X.B., Wang T.Y., Du J.Z., Wen Q.Y., Zhu F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quant. Inform. 6, 543–551 (2008)

    Article  MATH  Google Scholar 

  3. Chen X.B., Wen Q.Y., Guo F.Z., Sun Y., Xu G., Zhu F.C.: Controlled quantum secure direct communication with w state. Int. J. Quant. Inform. 6, 899–906 (2008)

    Article  MATH  Google Scholar 

  4. Chong S.K., Hwang T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with epr pairs. Opt. Commun. 284, 515–518 (2011)

    Article  ADS  Google Scholar 

  5. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Chen X.B., Wen Q.Y., Zhu F.C.: Probabilistic teleportation of a non-symmetric three-particle state. Chin. Phys. 15, 2240–2245 (2006)

    Article  ADS  Google Scholar 

  7. Chen X.B., Zhang N., Lin S., Wen Q.Y., Zhu F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a w state. Opt. Commun. 281, 2331–2335 (2008)

    Article  ADS  Google Scholar 

  8. Chen X.B., Wen Q.Y., Xu G., Yang Y.X., Zhu F.C.: Comment on “General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation”. Phys. Rev. A 79, 036301 (2009)

    Article  ADS  Google Scholar 

  9. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of an arbitrary two and three qubit states via the brown state. Quantum Inf. Process (Online). doi:10.1007/s11128-11011-10326-y (2012)

  10. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  12. Karimipour V., Bahraminasab A., Bagherinezhad S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  13. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Markham D., Sanders B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Li Q., Long D.Y., Chan W.H., Qiu D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaertner S., Kurtsiefer C., Bourennane M., Weinfurter H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)

    Article  ADS  Google Scholar 

  17. Bogdanski J., Rafiei N., Bourennane M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)

    Article  ADS  Google Scholar 

  18. Shi R.H., Huang L.S., Yang W., Zhong H.: Multi-party quantum state sharing of an arbitrary two-qubit state with bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  21. Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  22. Shi R., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with bell states and bell measurements. Opt. Commun. 283, 2476–2480 (2010)

    Article  ADS  Google Scholar 

  23. Lin S., Wen Q.Y., Qin S.J., Zhu F.C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  24. Gao G.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 283, 2997–3000 (2010)

    Article  ADS  Google Scholar 

  25. Zhang Z.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A: Stat. Mech. Appl. 361, 233–238 (2006)

    Article  Google Scholar 

  26. Chen X.B., Xu G., Niu X.X., Wen Q.Y., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  27. Sun Y., Wen Q.y., Zhu F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283, 181–183 (2010)

    Article  ADS  Google Scholar 

  28. Gan G.: Multiparty quantum secret sharing using two-photon three-dimensional bell states. Commun. Theor. Phys. 52, 421–424 (2009)

    Article  ADS  MATH  Google Scholar 

  29. Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  30. Shor P.W., Preskill J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  31. Wang T.Y., Wen Q.Y., Chen X.B., Guo F.Z., Zhu F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  32. Shannon C.E.: Communication theory of secret systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XB., Niu, XX., Zhou, XJ. et al. Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf Process 12, 365–380 (2013). https://doi.org/10.1007/s11128-012-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0379-6

Keywords

Mathematics Subject Classification (2010)

Navigation