Skip to main content

Advertisement

Log in

Entanglement manipulation via dynamics in multiple quantum spin systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study manipulation of entanglement between two identical networks of quantum mechanical particles. Firstly, we reduce the problem of entanglement transfer to the problem of quantum state transfer. Then, we consider entanglement concentration and purification based on free dynamics on the networks and local measurements on the vertices. By introducing an appropriate measure of efficiency, we characterize the performance of the protocol. We give evidence that such a measure does not depend on the network topology, and we estimate the contribution given by the number of entangled pairs initially shared by the two networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kimble H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Dür W., Briegel H.-J.: Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381–1424 (2007)

    Article  ADS  Google Scholar 

  3. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  4. Czechlewski,M., Grudka,A., Ishizaka, S.,Wojcik, A.: Entanglement purification protocol for amixture of a pure entangled state and a pure product state. Phys. Rev. A 80, 014303 (pp. 1–6) (2009)

    Google Scholar 

  5. Fujii, K., Yamamoto, K.: Entanglement purification with double selection. Phys. Rev. A 80, 042308 (pp. 1–9) (2009)

    Google Scholar 

  6. Yang, M., Yan, F., Cao, Z.: Purification of multipartite entanglement by local operations. arXiv:0904.2343

  7. Perseguers, S.: Fidelity threshold for long-range entanglement in quantum networks. Phys. Rev. A 81, 012310 (pp. 1–7) (2010)

    Google Scholar 

  8. Perseguers, S., Cavalcanti, D., Lapeyre, G.J. Jr., Lewenstein, M., Acin, A.: Multipartite entanglement percolation. Phys. Rev. A 81, 032327 (pp. 1–4) (2010)

    Google Scholar 

  9. Perseguers, S., Acin, A., Cirac, J.I., Lewenstein, M.: Quantum complex networks. arXiv: 0907.3283

  10. Paunkovic, N., Omar, Y., Bose, S., Vedral, V.: Entanglement concentration using quantum statistics. Phys. Rev. Lett. 88, 187903 (pp. 1–4) (2002)

    Google Scholar 

  11. Blume-Kohout, R., Croke, S., Gottesman, D.: Streaming universal distortion-free entanglement concentration. arXiv:0910.5952

  12. Maruyama, K., Nori, F.: Entanglement purification without controlled-NOT gates by using the natural dynamics of spin chains. Phys. Rev. A 78, 022312 (pp. 1–5) (2008)

    Google Scholar 

  13. Burgath D.: Quantum state transfer and time-dependent disorder in Quantum Chains. Eur. Phys. J. Special Top. 151, 147–156 (2007)

    Article  ADS  Google Scholar 

  14. Heng F., Korepin V., Roychowdhury V., Hadley C., Bose S.: Quantum communication through spin chain dynamics: an introductory overview. Phys. Rev. B 76, 014428 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Christandl,M., Datta, N., Ekert, A., Landahl, A.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (pp. 1–4) (2004)

    Google Scholar 

  16. Christandl,M., Datta, N., Dorlas, T., Ekert, A., Kay, A., Landahl, A.: Perfect transfer of arbitrary states in quantum spin, networks. Phys. Rev. A 71, 032312 (pp. 1–11) (2005)

    Google Scholar 

  17. Saxena N., Severini S., Shparlinski I.: Parameters of integral circulant graphs and periodic quantum dynamics. Int. J. Quant. Inf. 5, 417–429 (2007)

    Article  MATH  Google Scholar 

  18. Bose S., Casaccino A., Mancini S., Severini S.: Communication in XYZ all-to-all quantum networks with a missing link. Int. J. Quant. Inf 7, 713–723 (2009)

    Article  MATH  Google Scholar 

  19. Casaccino A., Lloyd S., Mancini S., Severini S.: Quantum state transfer through a qubit network with energy shift and fluctuations. Int. J. Quant. Inf. 7, 1417–1424 (2009)

    Article  MATH  Google Scholar 

  20. Lapeyre, J.,Wehr, J., Lewenstein,M.: Enhancement of entanglement percolation in quantum networks via lattice transformations. Phys. Rev. A 79, 042324 (pp. 1–11) (2009)

    Google Scholar 

  21. Acin A., Cirac J.I., Lewenstein M.: Entanglement percolation in quantum networks. Nature Phys. 3, 256–259 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Cuquet, M., Calsamiglia, J.: Entanglement percolation in quantum complex networks. Phys. Rev. Lett. 103, 240503 (pp. 1–4) (2009)

    Google Scholar 

  23. Broadfoot, S., Dorner, U., Jaksch, D.: Entanglement percolation with bipartite mixed states. EuroPhys. Lett. 88, 50002 (pp. 1–6) (2009)

    Google Scholar 

  24. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  PubMed  Google Scholar 

  25. Wooters W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  26. Wooters W., Hill S.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  27. Loss D., DiVincenzo D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  CAS  ADS  Google Scholar 

  28. Petta J.R., Johnson A.C., Taylor J.M., Laird E.A., Yacoby A., Lukin M.D., Marcus C.M., Hanson M.P., Gossard A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2191 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Yu-xi, L.,Wei, L.F., Nori, F.: Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit. Phys. Rev. A 71, 063820 (pp. 1–6) (2005)

    Google Scholar 

  30. Mandel O., Greiner M., Widera A., Rom T., Hansch T.W., Bloch I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Casaccino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casaccino, A., Mancini, S. & Severini, S. Entanglement manipulation via dynamics in multiple quantum spin systems. Quantum Inf Process 10, 107–121 (2011). https://doi.org/10.1007/s11128-010-0182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0182-1

Keywords

Navigation