Skip to main content
Log in

On the information transmission delay of the lexicographic product of digraphs

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The maximum distance and average distance of a digraph play significant roles in analyzing efficiency of interconnection networks; it provides an efficient parameter to measure the transmission delay in the network. In this paper, we use the lexicographic product method to construct a larger digraph from several specified small digraphs. The digraph constructed by this way can contain the factor digraphs as subgraphs and preserve many desirable properties of the factor digraphs. By using the extremal values way of algebra, we investigate the distance parameters of the lexicographic product of digraphs and establish a formula for the vertex distance of the lexicographic product of digraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sheldon, B.A., Balakrishnan, K.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Feder, T.: Stable Networks and Product Graphs. Memoirs of the American Mathematical Society, vol. 8, pp. 1–116. Stanford University (1995)

  3. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 83–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, J.M.: Topological Structure and Analysis of Interconnection Networks. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  5. Kumar, M., Mao, Y.H., Wang, Y.H., Qiu, T.R., Yang, C., Zhang, W.P.: Fuzzy theoretic approach to signals and systems: static systems. Inf. Sci. 418, 668–702 (2017)

    Article  Google Scholar 

  6. Zhang, W.P., Yang, J.Z., Fang, Y.L., Chen, H.Y., Mao, Y.H., Kumar, M.: Analytical fuzzy approach to biological data analysis. Saudi J. Biol. Sci. 24, 563–573 (2017)

    Article  Google Scholar 

  7. Soares, J.: Maximum distance of regular digraphs. J. Graph Theory 16, 437–450 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Knyazey, A.V.: Diameters of pseudosymmetric graphs. Mathematics Notes. 41, 473–482 (1987)

    Article  MathSciNet  Google Scholar 

  9. Dankelmann, P.: The diameter of directed graphs. J. Comb. Theory 94, 183–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, T., Xu, J.M., Liu, J.: On diameter and average distance of graphs. OR Trans. 8, 33–38 (2004)

    Google Scholar 

  11. Entringer, R.C., Jackson, D.E., Slater, P.J.: Geodetic connectivity of graphs. IEEE Trans. Circuits Syst. 24, 460–463 (1988)

    Article  MATH  Google Scholar 

  12. Ng, C.P., Teh, H.H.: On finite graphs of diameter 2. Nanta Math. 67, 72–75 (1966)

    MathSciNet  MATH  Google Scholar 

  13. Plesnik, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8, 1–21 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kouider, M., Winkler, P.: Mean distance and minimum degree. J. Graph Theory 25, 95–99 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, F.R.K.: The average distance and the independence number. J. Graph Theory 12, 229–235 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yegnanarayanan, V., Thiripurasundari, P.R.: On some graph operations and related applications. Electron. Notes Discrete Math. 33, 123–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harary, F., Hayes, J., Wu, H.J.: A survey of the theory of hypercube graphs. Comput. Math Appl. 15, 277–289 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thenmozhi, M., Sarath Chand, G.: Forecasting stock returns based on information transmission across global markets using support vector machines. Neural Comput. Appl. 27(4), 805–824 (2016)

    Article  Google Scholar 

  19. Chung, M.: Effective near advertisement transmission method for smart-devices using inaudible high-frequencies. Multimed. Tools Appl. 75(10), 5871–5886 (2016)

    Article  Google Scholar 

  20. Wang, W., Li, F., Lu, H.L., Xu, Z.B.: Graphs determined by their generalized characteristic polynomials. Linear Algebra Appl. 434, 1378–1387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan Press, London (1976)

    Book  MATH  Google Scholar 

  22. Li, F., Wang, W., Xu, Z.B., Zhao, H.X.: Some results on the lexicographic product of vertex-transitive graphs. Appl. Math. Lett. 24, 1924–1926 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chong, K., Yoo, S.: Neural network prediction model for a real-time data transmission. Neural Comput. Appl. 15(3–4), 373–382 (2006)

    Article  Google Scholar 

  24. Bashkow, T.R., Sullivan, H.: A large scale homogeneous full distributed parallel machine. In: Proceedings of 4th Annual Symposium on Computer Architecture, pp. 105–117 (1977)

  25. Day, K., Al-Ayyoub, A.: Minimal fault diameter for highly resilient product networks. IEEE Trans. Parallel Distrib. Syst. 11, 926–930 (2000)

    Article  Google Scholar 

  26. Georges, P.J., Mauro, D.W., Stein, M.I.: Labeling products of complete graphs with a condition at distance two. SIAM J. Discrete Math. 14, 28–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fisher, M.J., Isaak, G.: Distinguishing coloring of Cartesian products of complete graphs. Discrete Math. 308, 2240–2246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J.M.: Connectivity of Cartesian product digraphs and fault-tolerant routing of generalized hypercube. Appl. Math. 13, 179–187 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klavzar, S.: On the canonical metric representation, average distance, and partial Hamming graphs. Eur. J. Comb. 27, 68–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Balbuena, C., Garcia, P., Marcote, X.: Reliability of interconnection networks modeled by a product of graphs. Networks 48, 114–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chung, F.K., Coffman, E.G., Reimon, M.I.: The forwarding index of communication networks. IEEE Trans. Inf. Theory 33, 224–232 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, Z.B., Li, F., Zhao, H.X.: Vertex forwarding indices of the lexicographic product of graphs. Sci. Sin. Inf. 44, 482–497 (2014). (in Chinese)

    Google Scholar 

  33. Chang, C.P., Sung, T.Y., Hsu, L.H.: Edge congestion and topological properties of crossed cubes. IEEE Trans. Parallel Distrib. Syst. 11, 64–79 (2000)

    Article  Google Scholar 

Download references

Funding

The project was supported by the National Natural Science Foundation of China (No. 11551002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F. On the information transmission delay of the lexicographic product of digraphs. Photon Netw Commun 37, 187–194 (2019). https://doi.org/10.1007/s11107-018-0806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0806-4

Keywords

Navigation