Skip to main content
Log in

Effect Algebras as Presheaves on Finite Boolean Algebras

  • Published:
Order Aims and scope Submit manuscript

Abstract

For an effect algebra A, we examine the category of all morphisms from finite Boolean algebras into A. This category can be described as a category of elements of a presheaf R(A) on the category of finite Boolean algebras. We prove that some properties (being an orthoalgebra, the Riesz decomposition property, being a Boolean algebra) of an effect algebra A can be characterized in terms of some properties of the category of elements of the presheaf R(A). We prove that the tensor product of effect algebras arises as a left Kan extension of the free product of finite Boolean algebras along the inclusion functor. The tensor product of effect algebras can be expressed by means of the Day convolution of presheaves on finite Boolean algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, M., Foulis, D.: Interval and scale effect algebras. Adv. Appl. Math. 19, 200–215 (1997)

    Article  MathSciNet  Google Scholar 

  2. Beran, L.: Orthomodular Lattices, Algebraic Approach. Kluwer, Dordrecht (1985)

    Book  Google Scholar 

  3. Bȯrger, R.: The tensor product of orthomodular posets. In: Categorical Structures and Their Applications: Proceedings of the North-West European Category Seminar, p. 29. World Scientific, Berlin (2004)

  4. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Springer Verlag (1996)

  5. Chang, C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1959)

    Article  Google Scholar 

  6. Chovanec, F., Kôpka, F.: Boolean D-posets. Tatra Mt. Math. Publ. 10, 183–197 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Day, B.: On closed categories of functors, pp. 1–38. Springer, Berlin (1970)

    MATH  Google Scholar 

  8. Dvureċenskij, A.: Tensor product of difference posets. Trans. Am. Math. Soc. 347(3), 1043–1057 (1995)

    Article  MathSciNet  Google Scholar 

  9. Dvurecenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Bratislava, Kluwer Dordrechtand Ister Science (2000)

    Book  Google Scholar 

  10. Foulis, D., Bennett, M.: Tensor products of orthoalgebras. Order 10(3), 271–282 (1993)

    Article  MathSciNet  Google Scholar 

  11. Foulis, D., Bennett, M.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  MathSciNet  Google Scholar 

  12. Foulis, D., Greechie, R., Rütimann, G.: Filters and supports in orthoalgebras. Int. J. Theor. Phys. 35, 789–802 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19, 931–945 (1989)

    Article  MathSciNet  Google Scholar 

  14. Goodearl, K.: Partially Ordered Abelian Groups with Interpolation. Amer. Math. Soc, Providence (1986)

    MATH  Google Scholar 

  15. Gudder, S., Pulmannová, S.: Quotients of partial abelian monoids. Algebra Univers. 38, 395–421 (1998)

    Article  MathSciNet  Google Scholar 

  16. Jacobs, B., Mandemaker, J.: Coreflections in algebraic quantum logic. Found. Phys. 42(7), 932–958 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jenča, G.: Effect algebras are the Eilenberg-Moore category for the Kalmbach monad. Order 32(3), 439–448 (2015). https://doi.org/10.1007/s11083-014-9344-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalmbach, G.: Orthomodular Lattices. Academic Press, New York (1983)

    MATH  Google Scholar 

  19. Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Lane, S.M.: Categories for the Working Mathematician. No. 5 in Graduate Texts in Mathematics. Springer-Verlag (1971)

  21. Ludwig, G.: Foundations of Quantum Mechanics. Springer-Verlag, Berlin (1983)

    Book  Google Scholar 

  22. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer Science & Business Media (2012)

  23. Mundici, D.: Interpretation of AF C -algebras in Lukasziewicz sentential calculus. J. Funct. Anal. 65, 15–53 (1986)

    Article  MathSciNet  Google Scholar 

  24. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  25. Ravindran, K.: On a structure theory of effect algebras. Ph.D. thesis, Kansas State Univ., Manhattan, Kansas (1996)

  26. Riehl, E.: Category Theory in Context. Courier Dover Publications (2016)

  27. Staton, S., Uijlen, S.: Effect algebras, presheaves, non-locality and contextuality. In: International Colloquium on Automata, Languages, and Programming, pp. 401–413. Springer (2015)

Download references

Acknowledgements

This research is supported by grants VEGA 2/0069/16, 1/0420/15, Slovakia and by the Slovak Research and Development Agency under the contracts APVV-14-0013, APVV-16-0073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gejza Jenča.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenča, G. Effect Algebras as Presheaves on Finite Boolean Algebras. Order 35, 525–540 (2018). https://doi.org/10.1007/s11083-017-9447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-017-9447-y

Keywords

Navigation