Skip to main content
Log in

An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The main difficulty for solving semi-infinite programming (SIP) problem is precisely that it has infinitely many constraints. By using a maximum function, the SIP problem can be rewritten as a nonconvex nonsmooth constrained optimization (NNCO) problem. Global convergence in most of constrained optimization algorithms has traditionally been enforced by the use of a penalty function or filter strategy. In this paper, we propose an infeasible bundle method for NNCO problem based on the so-called improvement functions, without a penalty function and filter strategy. The method appears to be more direct and easier to implement, in the sense that it is closer in spirit and structure to the well-developed unconstrained bundle methods. Under a special constraint qualification, the sequence generated by this algorithm converges to the KKT point of the NNCO problem as well as the SIP problems. Preliminary numerical results show that this algorithm is robust and efficient for NNCO problems and SIP problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharjee, B., Lemonidis, P., Green, W.H. Jr, Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103, 283–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnans, J.F., Gilbert, J.C., Lemarchal, C., Sagastizbal, C.: Numerical Optimization: Theoretical and Pratical Aspects, 2nd edn. Springer, Berlin (2000)

    Google Scholar 

  3. Cánovas, M.J., Hantoute, A., Láopez, M.A., Parra, J.: Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. 139, 485–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, F.H., Ledyaev, Y.u.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  5. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferrier, C.: Computation of the distance to semi-algebraic sets. ESAIM Control Optim. Calc. Var. 5, 139–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher, R., Leyffer, S.: A Bundle Filter Method for Nonsmooth Nonlinear Optimization, Numerical Analysis Report NA/195, Department of Mathematics. The University of Dundee, Scotland (1999)

    Google Scholar 

  8. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise and model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19, 89–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, New-York (1998)

    MATH  Google Scholar 

  12. Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109, 181–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hare, W., Poliquin, R.A.: Prox-regularity and stability of the proximal mapping. J. Convex Anal. 14, 589–606 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hare, W., Sagastizbal, C.: Computing proximal points of nonconvex functions. Math Program. 116, 221–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hare, W., Sagastizábal, C.: A redistributed proximal bundlemethod for nonconvex optimization. SIAM J. Optim. 20, 2442–2473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63, 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karmitsa, N., Mäkelä, M.M.: Adaptive limited memory bundle method for bound constrained largescale nonsmooth optimization. Optimization 59, 945–962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karmitsa, N., Mäkelä, M.M.: Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis. Optim. Methods Softw. 25, 895–916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karmitsa, N., Mäkelä, M.M., Ali, M.M.: Limited memory interior point bundle method for large inequality constrained nonsmooth minimization. Appl. Math. Comput. 198, 382–400 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  22. Kiwiel, K.C.: An exact penalty function algorithm for nonsmooth convex constrained minimization problems. IMA J. Numer. Anal. 5, 111–119 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiwiel, K.C.: Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization. Math. Program. 52, 285–302 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kortanek, K.O., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim. 3, 901–918 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuntsevich, A., Kappel, F.: SolvOpt-The solver for local nonlinear optimization problems: Matlab, C and fortran source codes, institute for mathematics. Karl-Franzens University of Graz (1997)

  26. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69, 111–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lv, J., Pang, L.P., Wang, J.H.: Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization. Appl. Math. Comput. 265, 635–651 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)

    Book  MATH  Google Scholar 

  30. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. In: Tuovinen, T., Repin, S., Neittaanmäki, P. (eds.) Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol. 40, pp 191–204. Springer (2016)

  31. Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24, 1670–1697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191–207 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large-scale semi-infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pang, L.P., Lv, J., Wang, J.H.: Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems. Comput. Optim. Appl. 64, 433–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

  37. Rockafellar, R.T., Wets, J.J.-B.: Variational Analysis, Volume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1998)

    Google Scholar 

  38. Rückmann, J.-J., Stein, O.: On convex lower level problems in generalized semi-infinite optimization. In: Goberna, M. A., López, M. A. (eds.) Semi-infinite Programming Recent Advances, pp 121–134. Kluwer, Dordrecht (2001)

  39. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. European J. Oper. Res. 142, 444–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stein, O.: Bi-level Strategies in Semi-infinite Programming. Kluwer, Boston (2003)

    Book  MATH  Google Scholar 

  43. Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory Appl. 121, 647–671 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequality constrained optimization. Ann. Oper. Res. 28, 215–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tichatschke, R., Nebeling, V.: A cutting plane method for quadratic semi-infinite programming. Probl. Optim. 19, 803–817 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite programming. Optim, Methods Soft. 20, 629–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Y., Pang, L.P., Ma, X.F., Shen, J.: Constrained nonconvex nonsmooth optimization via proximal bundle method. J. Optim. Theory Appl. 163, 900–925 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, L.P., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20, 2959–2977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Pang.

Additional information

Partially supported by Huzhou science and technology plan on No.2016GY03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Pang, LP., Xu, N. et al. An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems. Numer Algor 80, 397–427 (2019). https://doi.org/10.1007/s11075-018-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0490-6

Keywords

Mathematics Subject Classifications (2010)

Navigation