Skip to main content
Log in

Image denoising based on improved bidimensional empirical mode decomposition thresholding technology

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel image denoising methodology based on improved bidimensional empirical mode decomposition and soft interval thresholding technique is proposed. First, a noise compressed image is constructed. Then, the noise compressed image is decomposed by means of bidimensional empirical mode decomposition (BEMD) into a series of intrinsic mode functions (IMFs), which are separated into signal-dominant IMFs and noise-dominant IMFs using a similarity measure based on ℓ2-norm and a probability density function, and a soft interval thresholding technique is used adaptively to remove the noise inherent in noise-dominant IMFs. Finally, a denoised image is reconstructed by combining the signal-dominant IMFs and the denoised noise-dominant IMFs. The performance of the proposed denoising method is evaluated by using multiple images with different types of noise, and results from the proposed method are compared with those of other conventional methods in various noisy environments. Simulation results demonstrate that the proposed denoising method outperforms other denoising methods in terms of peak signal-to-noise ratio, mean square error and energy of the first IMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Abergel R, Louchet C, Moisan L, Zeng T (2015) Total variation restoration of images corrupted by poisson noise with iterated conditional expectations. In: International Conference on Scale Space and Variational Methods in Computer Vision. Springer, pp 178–190

  2. Ahn J, Kwak D, Koh B (2014) Fault detection of a roller-bearing system through the EMD of a wavelet Denoised signal. SENSORS 14(8):15022–15038. https://doi.org/10.3390/s140815022

    Article  Google Scholar 

  3. Amo C, de Santiago L, Barea R (2017) Analysis of gamma-band activity from human EEG using empirical mode decomposition. Sensors 17(5):989–1003. https://doi.org/10.3390/s17050989

    Article  Google Scholar 

  4. An F, Lin D, Zhou X, Sun Z (2015) Enhancing image Denoising performance of Bidimensional empirical mode decomposition by improving the edge effect. Int J Antenn Propag 2015:1–12. https://doi.org/10.1155/2015/769478

    Article  Google Scholar 

  5. Bindilatti AA, Mascarenhas NDA (2013) A nonlocal poisson denoising algorithm based on stochastic distances. IEEE Signal Process Lett 20(11):1010–1013. https://doi.org/10.1109/LSP.2013.2277111

    Article  Google Scholar 

  6. Bindilatti AA, Vieira MAC, Mascarenhas NDA (2018) Poisson wiener filtering with non-local weighted parameter estimation using stochastic distances. Signal Process 144:68–76. https://doi.org/10.1016/j.sigpro.2017.10.001

    Article  Google Scholar 

  7. Bioucas-Dias JM, Figueiredo MAT (2010) Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process 19(7):1720–1730. https://doi.org/10.1109/TIP.2010.2045029

    Article  MathSciNet  MATH  Google Scholar 

  8. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale model. Simul 4(2):490–530. https://doi.org/10.1137/040616024

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui B, Chen X (2015) Improved hybrid filter for fiber optic gyroscope signal denoising based on EMD and forward linear prediction. Sensors Actuators A Phys 230:150–155. https://doi.org/10.1016/j.sna.2015.04.021

    Article  Google Scholar 

  10. Cui BB, Chen XY, Tang XH (2017) Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error. IEEE Trans Signal Process 65(11):2975–2987. https://doi.org/10.1109/TSP.2017.2679685

    Article  MathSciNet  MATH  Google Scholar 

  11. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TransImage Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  12. Deering R, Kaiser JF (2005) The use of a masking signal to improve empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05). IEEE, pp: 485–488

  13. Deledalle CA, Tupin F, Denis L (2010) Poisson NL means: Unsupervised non local means for Poisson noise. IEEE Int Conf Image Process. IEEE: 801–804. https://doi.org/10.1109/ICIP.2010.5653394

  14. Deza MM, Deza E (2009) Encyclopedia of distances. Springer, Berlin, p 94

    Book  Google Scholar 

  15. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theor 41(3):613–627

    Article  MathSciNet  Google Scholar 

  16. Flandrin P, Gonçalves P, Rilling G (2005) EMD equivalent filter banks, from interpretation to applications. In: Dua J (ed) Hilbert–Huang transform and its applications, 2rd end. World Scientific, Singapore, pp 99–116

    Google Scholar 

  17. Gan L, Zhou L, You X (2014) A new GPR image de-nosing method based on BEMD. 2014 I.E. Int Conf Secur, Pattern Ana, Cybern (ICSPAC): 328–331

  18. He Z, Wang Q, Shen Y, Jin J, Wang Y (2013) Multivariate gray model-based BEMD for hyperspectral image classification. Ieee T Instrum Meas 62(5):889–904. https://doi.org/10.1109/TIM.2013.2246917

    Article  Google Scholar 

  19. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N, Tung CC (1971) Liu HH (1998) the empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond A 454:903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MATH  Google Scholar 

  20. Jain P, Tyagi V (2016) A survey of edge-preserving image denoising methods. Inform Syst Front 18(1):159–170. https://doi.org/10.1007/s10796-014-9527-0

    Article  Google Scholar 

  21. Kabir MA, Shahnaz C (2012) Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Proces 7(5):481–489. https://doi.org/10.1016/j.bspc.2011.11.003

    Article  Google Scholar 

  22. Kay SM (1993) Fundamentals of statistical signal processing, volume 1: estimation theory. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  23. Khaldi K, Boudraa AO, Komaty A (2014) Speech enhancement using empirical mode decomposition and the Teager–Kaiser energy operator. J Acoust Soc Am 135:451–459

    Article  Google Scholar 

  24. Komaty A, Boudraa A, Augier B, Dare-Emzivat D (2014) EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE T Instrum Meas 63(1):27–34. https://doi.org/10.1109/TIM.2013.2275243

    Article  Google Scholar 

  25. Kopsinis Y, McLaughlin S (2009) Development of EMD-based Denoising methods inspired by wavelet thresholding. IEEE T Signal Proces 57(4):1351–1362. https://doi.org/10.1109/TSP.2009.2013885

    Article  MathSciNet  MATH  Google Scholar 

  26. Labate D, Foresta FL, Occhiuto G, Morabito FC, Lay-Ekuakille A, Vergallo P (2013) Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from Single-Channel ECG: a comparison. IEEE Sensors J 13(7):2666–2674. https://doi.org/10.1109/JSEN.2013.2257742

    Article  Google Scholar 

  27. Louchet C, Moisan L (2008) Total variation denoising using posterior expectation. 2008 Proc 16nd Eur Sign Process Conf (EUSIPCO). IEEE: 1–5

  28. Louchet C, Moisan L (2014) Total variation denoising using iterated conditional expectation. 2014 Proc 22nd Eur Sign Process Conf (EUSIPCO). IEEE: 1592–1596

  29. Maggioni M, Katkovnik V, Egiazarian K, Foi A (2013) Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process 22(1):119–133. https://doi.org/10.1109/TIP.2012.2210725

    Article  MathSciNet  MATH  Google Scholar 

  30. Niu J, Bu X, Qian K (2017) Exploiting contrast cues for salient region detection. Multimed Tools Appl 76(8):10427–10441. https://doi.org/10.1007/s11042-016-3430-2

    Article  Google Scholar 

  31. Nunes JC, Bouaoune Y, Delechelle E (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026

    Article  Google Scholar 

  32. Nunes JC, Guyot S, Del Chelle E (2005) Texture analysis based on local analysis of the Bidimensional empirical mode decomposition. Mach Vision Appl 16(3):177–188. https://doi.org/10.1007/s00138-004-0170-5

    Article  Google Scholar 

  33. Omitaomu OA, Protopopescu VA, Ganguly AR (2011) Empirical mode decomposition technique with conditional mutual information for denoising operational sensor data. IEEE Sensors J 11:2565–2575

    Article  Google Scholar 

  34. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  35. Salmon J, Harmany Z, Deledalle CA, Willett R (2014) Poisson noise reduction with non-local PCA. J Math Imaging Vision 48(2):279–294. https://doi.org/10.1007/s10851-013-0435-6

    Article  MathSciNet  MATH  Google Scholar 

  36. Valles-Novo R, de Jesus R-MJ, Ramirez-Cortes JM, Peregrina-Barreto H, Morales-Caporal R (2015) Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE T Instrum Meas 64(5):1118–1128. https://doi.org/10.1109/TIM.2014.2373513

    Article  Google Scholar 

  37. Wang SH, Muhammad K, Lv YD, Sui YX, Han LX, Zhang YD (2018) Identification of alcoholism based on wavelet Renyi entropy and three-segment encoded Jaya algorithm. Complexity. https://doi.org/10.1155/2018/3198184

    MathSciNet  MATH  Google Scholar 

  38. Xu Y, Ahn CK, Shmaliy YS, Chen XY, Li YY (2018) Adaptive robust INS/UWB-integrated human tracking using UFIR filter bank. Measurement 123:1–7

    Article  Google Scholar 

  39. Yan CC, Xie HT, Chen JJ et al (2018) An effective Uyghur text detector for complex background images. IEEE Trans Multimed 14(8):1–11. https://doi.org/10.1109/TMM.2018.2838320

    Article  Google Scholar 

  40. Yan CG, Xie HT, Liu S, Yin J, Zhang YD, Dai QH (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229. https://doi.org/10.1109/TITS.2017.2749977

    Article  Google Scholar 

  41. Yan CG, Xie HT, Yang DB, Yin J, Zhang YD, Dai QH (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295. https://doi.org/10.1109/TITS.2017.2749965

    Article  Google Scholar 

  42. Yan CG, Zhang YD, Xu JZ, Dai F, Li L, Dai QH, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576. https://doi.org/10.1109/LSP.2014.2310494

    Article  Google Scholar 

  43. Yan CG, Zhang YD, Xu JZ, Dai F, Zhang J, Dai QH, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE T Circ Syst Vid 24(12):2077–2089. https://doi.org/10.1109/TCSVT.2014.2335852

    Article  Google Scholar 

  44. Yu B, Lou L, Li S, Zhang Y, Qiu W, Wu X, Wang M, Tian B (2017) Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising. J Mol Graph Model 76:260–273. https://doi.org/10.1016/j.jmgm.2017.07.012

    Article  Google Scholar 

  45. Zao L, Coelho R, Flandrin P (2014) Speech enhancement with EMD and Hurst-based mode selection (2014) speech enhancement with EMD and Hurst-based mode selection. IEEE/ACM Trans Audio Speech Language Process 22(5):899–911. https://doi.org/10.1109/TASLP.2014.2312541

    Article  Google Scholar 

  46. Zhang YD, Wu LN (2008) Improved image filter based on SPCNN. Sci Chin Inform Sci 51(12):2115–2125. https://doi.org/10.1007/s11432-008-0124-z

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51375087, 51405203) and the Transformation Program of Science and Technology Achievements of Jiangsu Province (Grant No. BA2016139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyuan Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Chen, X. Image denoising based on improved bidimensional empirical mode decomposition thresholding technology. Multimed Tools Appl 78, 7381–7417 (2019). https://doi.org/10.1007/s11042-018-6503-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6503-6

Keywords

Navigation