Skip to main content
Log in

Anomaly detection using sparse reconstruction in crowded scenes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an algorithm of anomaly detection in crowded scenes by using sparse representation over the normal bases. First, the histogram of maximal optical flow projection (HMOFP) features are extracted from a set of normal training data. Then, the online dictionary learning algorithm is used to train an optimal dictionary with proper redundancy, which is better than the dictionary simply composed by the HMOFP features of the whole training data. In order to detect the normalness of a frame, the l 1-norm of the sparse reconstruction coefficients is used as the Reconstruction Coefficient Sparsity (RCS). Our algorithm is effective for both global abnormal events (GAE) and local abnormal events (LAE). We evaluate our method on three benchmark datasets-the UMN dataset, the PETS2009 dataset and the UCSD Ped1 dataset. Compared with the most popular methods, experimental results show that our algorithm achieves good results especially for the pixel-level local abnormal event localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Bi C, Wang H, Bao R (2014) SAR image change detection using regularized dictionary learning and fuzzy clustering [J]. IEEE Int Conf Cloud Comput Intell Syst (CCIS): 327–330

  3. Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. IEEE Conf Comput Vision Pattern Recogn (CVPR): 3449–3456

  4. Donoho DL, Tsaic Y (2006) Extensions of compressed sensing. Signal Process 86(3):533–548

    Article  Google Scholar 

  5. Gu X, Cui J, Zhu Q (2014) Abnormal crowd behavior detection by using the particle entropy[J]. Optik-Int J Light Electron Optics 125(14):3428–3433

    Article  Google Scholar 

  6. Haque M, Murshed M (2010) Panic-driven event detection from surveillance video stream without track and motion features. IEEE Int Conf Multimed Expo (ICME): 173–178

  7. Hung T, Lu J, Tan Y (2013) Cross-scene abnormal event detection. IEEE Int Sym Circ Syst (ISCAS): 2844–2847

  8. Junior JSJ, Musse S, Jung C (2010) Crowd analysis using computer vision techniques. IEEE Signal Process Mag 5(27):66–77

    Google Scholar 

  9. Kosmopoulos D, Chatzis SP (2010) Robust visual behavior recognition. IEEE Signal Process Mag 27(5):34–45

    Article  Google Scholar 

  10. Lee CP, Lim KM, Woon WL (2010) Statistical and entropy based abnormal motion detection[C]. IEEE Student Conf Res Dev (SCOReD): 192–197

  11. Li A, Miao Z, Cen Y, Wang T, Voronin V (2015) Histogram of maximal optical flow projection for abnormal events detection in crowded scenes. Int J Distrib Sensor Netw. doi:10.1155/2015/406941

    Google Scholar 

  12. Mahadevan V, Li W, Bhalodia V et al. (2010) Anomaly detection in crowded scenes. IEEE Conf Comput Vision Pattern Recogn (CVPR): 1975–1981

  13. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. Proc 26th Ann Int Conf Mach Learn (ACM): 689–696

  14. Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. IEEE Conf Comput Vision Pattern Recogn (CVPR): 935–942

  15. PETS (2009) Performance evaluation of tracking and surveillance (pets) 2009 benchmark data. http://www.cvg.reading.ac.uk/PETS2009/a.html

  16. Quan Q, Hong-Yi C, Rui Z (2009) Entropy based method for network anomaly detection[C]. IEEE Pacific Rim Int Symp Depend Comput: 189–191

  17. Ren H, Moeslund TB (2014) Abnormal event detection using local sparse representation. IEEE Int Conf Adv Video Sign Based Surveill (AVSS) 125–130

  18. Rodriguez M, Ali S, Kanade T (2009) Tracking in unstructured crowded scenes. IEEE Int Conf Comput Vision: 1389–1396

  19. Sandhan T, Srivastava T, Sethi A, Jin Y (2013) Unsupervised learning approach for abnormal event detection in surveillance video by revealing infrequent patterns. IEEE Int Conf Imag Vision Comput N Z (IVCNZ): 494–499

  20. Shi Y, Gao Y, Wang R (2010) Real-time abnormal event detection in complicated scenes. IEEE Int Conf Pattern Recogn (ICPR): 3653–3656

  21. Sjarif NNA, Shamsuddin SM, Hashim SZ (2011) Detection of abnormal behaviors in crowd scene: a review. Int J Adv Soft Comput Appl 3(3):1–33

    Google Scholar 

  22. Thida M, Yong YL, Climent-Pérez P, Eng H-l, Remagnino P (2013) A literature review on video analytics of crowded scenes. Intell Multimed Surveill: 17–36

  23. Tropp J, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  24. Tziakos I, Cavallaro A, Xu L (2010) Local abnormal detection in video using subspace learning. IEEE Int Conf Adv Video Sign Based Surveill (AVSS): 519–525

  25. UMN, Unusual crowd activity dataset of University of Minnesota, department of computer science and engineering. http://mha.cs.umn.edu/movies/crowd-activity-all.avi

  26. Wang T, Snoussi H (2014) Detection of abnormal visual events via global optical flow orientation histogram. IEEE Trans Inform Forensics Sec 9(6):988–998

    Article  Google Scholar 

  27. Xie M, Hu J, Guo S (2015) Segment-based anomaly detection with approximated sample covariance matrix in wireless sensor network. IEEE Trans Parallel Distrib Syst 26(2):574–583

    Article  Google Scholar 

  28. Yang M, Dai D, Shen L et al. (2014) Latent dictionary learning for sparse representation based classification [C]. IEEE Comput Vision Pattern Recogn (CVPR): 4138–4145

  29. Yang M, Zhang L, Feng X et al (2014) Sparse representation based fisher discrimination dictionary learning for image classification [J]. Int J Comput Vis 109(3):209–232

    Article  MathSciNet  MATH  Google Scholar 

  30. Yen S, Wang C (2013) Abnormal event detection using HOSF. Int Conf IT Converg Secur (ICITCS): 1–4

  31. Zhan B et al (2008) Crowd analysis: a survey. Mach Vis Appl 19(5–6):345–357

    Article  Google Scholar 

  32. Zhang Y, Qin L, Yao H, Huang Q (2012) Abnormal crowd behavior detection based on social attribute-aware force model. IEEE Int Conf Imag Process (ICIP): 2689–2692

  33. Zhang Y, Qin L, Yao H, Huang Q (2015) Social attribute-aware force model: exploiting richness of interaction for abnormal crowd detection. IEEE Trans Circ Syst Video Technol 25(7):1231–1245

    Article  Google Scholar 

  34. Zhu X, Liu J, Wang J, Li C, Lu H (2014) Sparse representation for robust abnormality detection in crowded scenes. Pattern Recogn 47(5):1791–1799

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the 973 Program (no. 2011CB302203), NSFC (nos. 61572067, 61272028, 61273274, 61672089, 61602538, and 61572064), PXM2016_014219_000025, National Key Technology R&D Program of China (no. 2012BAH01F03), NSFB (no. 4123104), Beijing Municipal Natural Science Foundation (no. 4162050), and Natural Science Foundation of Guangdong Province (no. 2016A030313708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Miao, Z., Cen, Y. et al. Anomaly detection using sparse reconstruction in crowded scenes. Multimed Tools Appl 76, 26249–26271 (2017). https://doi.org/10.1007/s11042-016-4115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4115-6

Keywords

Navigation