Skip to main content
Log in

A Two-Grid Block-Centered Finite Difference Algorithm for Nonlinear Compressible Darcy–Forchheimer Model in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a block-centered finite difference method is proposed to discretize the compressible Darcy–Forchheimer model which describes the high speed non-Darcy flow in porous media. The discretized nonlinear problem on the fine grid is solved by a two-grid algorithm in two steps: first solving a small nonlinear system on the coarse grid, and then solving a nonlinear problem on the fine grid. On the coarse grid, the coupled term of pressure and velocity is approximated by using the fewest number of node values to construct a nonlinear block-centered finite difference scheme. On the fine grid, the original nonlinear term is modified with a small parameter \(\varepsilon \) to construct a linear block-centered finite difference scheme. Optimal order error estimates for pressure and velocity are obtained in discrete \(l^\infty (L^2)\) and \(l^2(L^2)\) norms, respectively. The two-grid block-centered finite difference scheme is proved to be unconditionally convergent without any time step restriction. Some numerical examples are given to testify the accuracy of the proposed method. The numbers of iterations are reported to illustrate the efficiency of the two-grid algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aulisa, E., Ibragimov, A., Valko, P., Walton, J.: Mathematical framework of the well productivity index for fast Forchheimer (non-Darcy) flows in porous media. Math. Models Methods Appl. Sci. 19(8), 1241–1275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aulisa, E., Bloshanskaya, L., Hoang, L., Ibragimov, A.: Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys. 50(10), 103102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bi, C., Ginting, V.: Two-grid finite volume element for linear and nonlinear elliiptic problems. Numer. Math. 108, 177–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaudhary, K., Cardenas, M.B., Deng, W., Bennett, P.C.: The role of eddies inside pores in the transition from Darcy to Forchheimer flows. Geophys. Res. Lett. 38(24), L24405 (2011)

    Article  Google Scholar 

  5. Chen, L., Chen, Y.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction–diffusion equations. Int. J. Numer. Methods Eng. 57(2), 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing 45, 1782–1788 (1901)

    Google Scholar 

  9. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy–Forchheimer model. Numer. Math. 110, 161–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y., Wang, A.: A simplified two-level method for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoang, L., Ibragimov, A.: Structural stability of generalized Forchheimer equations for compressible fluids in porous media. Nonlinearity 24(1), 1–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoang, L., Ibragimov, A.: Qualitative study of generalized Forchheimer flows with the flux boundary condition. Adv. Differ. Equ. 17, 511–556 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Kieu, Thinh T.: Analysis of expanded mixed finite element methods for the generalized forchheimer flows of slightly compressible fluids. Numer. Methods Partial Differ. Equ. 32, 60–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B., Sun, W.: Uncontionally convergence and optimal error analysis for a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, W., Yin, Z., Li, J.: A two-grid algorithm based on expanded mixed element discretizations for strongly nonlinear elliptic equations. Numer. Algorithms 70, 93–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pan, H., Rui, H.: Mixed element method for two-dimensional Darcy–Forchheimer model. J. Sci. Comput. 52, 563–587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, E.J.: Mixed finite element method for generalized Forchheimer flow in porous media. Numer. Methods Partial Differ. Equ. 21, 213–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 5, 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rui, H., Pan, H.: A block-centered finite difference method for slightly compressible Darcy–Forchheimer flow in porous media. J. Sci. Comput., accepted

  21. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math. 30, 681–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53(4), 1941–1962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rui, H., Zhao, D., Pan, H.: A block-centered finite difference method for Darcy–Forchheimer model with variable Forchheimer number. Numer. Methods Partial Differ. Equ. 31(5), 1603–1622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruth, D., Ma, H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7(3), 255–264 (1992)

    Article  Google Scholar 

  25. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite difference for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wheeler, M.F., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121, 165–204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2010–2082 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, J., Hu, X., Zhong, L., Shu, S., Chen, L.: Two-grid methods for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 52, 2027–2047 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of first author was supported in part by the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics, The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

The work of the first author is supported by the National Natural Science Foundation of China Grant No: 11401289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Cui, J. A Two-Grid Block-Centered Finite Difference Algorithm for Nonlinear Compressible Darcy–Forchheimer Model in Porous Media. J Sci Comput 74, 1786–1815 (2018). https://doi.org/10.1007/s10915-017-0516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0516-6

Keywords

Mathematics Subject Classification

Navigation