Skip to main content
Log in

Euclidean Distance-Based Skeletons: A Few Notes on Average Outward Flux and Ridgeness

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Among the various existing and mathematically equivalent definitions of the skeleton, we consider the set of critical points of the Euclidean distance transform of the shape. The problem of detecting these points and using them to generate a skeleton that is stable, thin and homotopic to the shape has been the focus of numerous papers. Skeleton branches correspond to ridges of the distance map, i.e., continuous lines of points that are local maxima of the distance in at least one direction. Extracting these ridges is a non-trivial task on a discrete grid. In this context, the average outward flux, used in the Hamilton–Jacobi skeleton (Siddiqi et al. in Int J Comput Vis 48(3):215–231, 2002), and the ridgeness measure (Leborgne et al. in J Vis Commun Image Represent 31:165–176, 2015) have been proposed as ridge detectors. We establish the mathematical relation between these detectors and, extending the work in Dimitrov et al. (Computer vision and pattern recognition, pp 835–841, 2003), we study various local shape configurations, on which closed-form expressions or approximations of the average outward flux and ridgeness can be derived. In addition, we conduct experiments to assess the accuracy of skeletons generated using these measures and study the influence of their respective parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Throughout the paper, we refer to detailed mathematical derivations in appendices, which are provided in a supplementary document.

  2. The notion of the object angle is explained in Sect. 3.

  3. A similar result was already stated in [18].

  4. For the CC-AOF, we used the skeleton module by F.-X. Dupé integrated in D. Tschumperlé’s CImg library: https://github.com/dtschump/CImg. For the IMA, we used our own C++ translation of the Java implementation available at http://wimhesselink.nl/imageproc/skeletons.

References

  1. Alzer, H., Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amenta, N., Sunghee, C., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2–3), 127–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 31, 512–524 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arcelli, C., Sanniti di Baja, G.: A width-independent fast thinning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 7(4), 463–474 (1985)

    Article  Google Scholar 

  5. Arcelli, C., Sanniti di Baja, G.: Ridge points in Euclidean distance maps. Pattern Recognit. Lett. 13(4), 237–243 (1992)

    Article  Google Scholar 

  6. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  7. Bai, X., Latecki, L.J., Liu, W.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 449–462 (2007)

    Article  Google Scholar 

  8. Barnard, R.W., Pearce, K., Richards, K.C.: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31, 693–699 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barnard, R.W., Pearce, K., Richards, K.C.: A monotonicity property involving \({}_3{F}_2\) and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32, 403–419 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognit. Lett. 15(2), 169–175 (1994)

    Article  MATH  Google Scholar 

  11. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10, 167–180 (1978)

    Article  MATH  Google Scholar 

  12. Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)

    Article  Google Scholar 

  13. Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by Voronoi diagram. Comput. Vis. Gr. Image Process. Image Underst. 55(3), 329–337 (1992)

    MATH  Google Scholar 

  14. Carlson, B.C.: Some inequalities for hypergeometric functions. Proc. Am. Math. Soc. 17, 32–39 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carlson, B.C.: Elliptic integrals. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions, pp. 485–522. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  16. Chazal, F., Lieutier, A.: The \(\lambda \)-medial axis. Gr. Models 67(4), 304–331 (2005)

    Article  MATH  Google Scholar 

  17. Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)

    Article  Google Scholar 

  18. Dimitrov, P., Damon, J.N., Siddiqi, K.: Flux invariants for shape. In: Computer Vision and Pattern Recognition, pp. 835–841 (2003)

  19. Direkoglu, C., Dahyot, R., Manzke, M.: On using anisotropic diffusion for skeleton extraction. Int. J. Comput. Vis. 100(2), 170–189 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from discrete Euclidean distance maps. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1055–1066 (1996)

    Article  Google Scholar 

  21. Giblin, P.J., Kimia, B.B.: A formal classification of the 3D medial axis points and their local geometry. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 238–251 (2004)

    Article  Google Scholar 

  22. Hesselink, W., Roerdink, J.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2204–2217 (2008)

    Article  Google Scholar 

  23. Jalba, A.C., Sobiecki, A., Telea, A.C.: An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 30–45 (2016)

    Article  Google Scholar 

  24. Katz, R.A., Pizer, S.M.: Untangling the blum medial axis transform. Int. J. Comput. Vis. 55(2–3), 139–153 (2003)

    Article  Google Scholar 

  25. Kimmel, R., Shaked, D., Kiryati, N.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)

    Article  Google Scholar 

  26. Lam, L., Lee, S.-W., Suen, C.: Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  27. Latecki, L.J., Li, Q., Bai, X., Liu, W.: Skeletonization using SSM of the distance transform. In: International Conference in Image Processing, pp. 349–352 (2007)

  28. Leborgne, A., Mille, J., Tougne, L.: Noise-resistant digital euclidean connected skeleton for graph-based shape matching. J. Vis. Commun. Image Represent. 31, 165–176 (2015)

    Article  Google Scholar 

  29. Leborgne, A., Mille, J., Tougne, L.: Hierarchical skeleton for shape matching. In: International Conference in Image Processing, pp. 3603–3607 (2016)

  30. Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. 4(4), 363–369 (1982)

    Article  MATH  Google Scholar 

  31. Li, Q, Bai, X., Liu, W.: Skeletonization of gray-scale image from incomplete boundaries. In: International Conference in Image Processing, pp. 877–880 (2008)

  32. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Bone graphs: medial shape parsing and abstraction. Comput. Vis. Image Underst. 115(7), 1044–1061 (2011)

    Article  Google Scholar 

  33. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Object categorization using bone graphs. Comput. Vis. Image Underst. 115(8), 1187–1206 (2011)

    Article  Google Scholar 

  34. Marie, R., Labbani-Igbida, O., Mouaddib, E.M.: The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recognit. 56, 25–39 (2016)

    Article  Google Scholar 

  35. Meijster, A., Roerdink, J., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 331–340 (2000)

  36. Neuman, E.: Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 373(1), 203–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ogniewicz, R., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognit. 28(3), 343–359 (1995)

    Article  Google Scholar 

  38. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406(1–2), 119–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pizer, S.M., Siddiqi, K., Székely, G., Damon, J.N., Zucker, S.W.: Multiscale medial loci and their properties. Int. J. Comput. Vis. 55(2–3), 155–179 (2003)

    Article  Google Scholar 

  40. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)

    Article  Google Scholar 

  41. Sebastian, T., Kimia, B.: Curves versus skeletons in object recognition. Sig. Process. 85(2), 247–263 (2005)

    Article  MATH  Google Scholar 

  42. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)

    Article  Google Scholar 

  43. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton–Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  44. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)

    Article  Google Scholar 

  45. Torsello, A., Hancock, E.R.: Correcting curvature-density effects in the Hamilton–Jacobi skeleton. IEEE Trans. Image Process. 15(4), 877–891 (2006)

    Article  Google Scholar 

  46. Vamanamurthy, M.K., Vuorinen, M.: Inequalities for means. J. Math. Anal. Appl. 183(1), 155–166 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Pproceedings of a Special Functions and Differential Equations, Workshop Held at The Institute of Mathematical Sciences, Madras, India, pp. 119–126 (1997)

  48. Yang, C., Tiebe, O., Shirahama, K., Grzegorzek, M.: Object matching with hierarchical skeletons. Pattern Recognit. 55, 183–197 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Moncef Hidane for the fruitful discussions. In particular, he suggested that we study bounds for elliptic integrals and directed us toward several well-known theorems in calculus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Mille.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 461 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mille, J., Leborgne, A. & Tougne, L. Euclidean Distance-Based Skeletons: A Few Notes on Average Outward Flux and Ridgeness. J Math Imaging Vis 61, 310–330 (2019). https://doi.org/10.1007/s10851-018-0836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0836-7

Keywords

Navigation