Skip to main content
Log in

Finding dense locations in symbolic indoor tracking data: modeling, indexing, and processing

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical Dense Location Time Index (HDLT-Index) is proposed for indexing the time intervals of the mapping table, along with index construction, query processing, and pruning techniques. The HDLT-Index supports very efficient aggregate point, interval, and duration queries as well as dense location queries. A comprehensive experimental study with both real and synthetic data shows that the proposed techniques are efficient and scalable and outperforms RDBMSs significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Listing 1

Similar content being viewed by others

References

  1. Ahmed T, Pedersen TB, Lu H (2013) Capturing hotspots for constrained indoor movement. In: SIGSPATIAL/GIS, pp 462–465

  2. Ahmed T, Pedersen TB, Lu H (2014) Finding dense locations in indoor tracking data. In: MDM, pp 189–194

  3. Ahmed T, Pedersen TB, Lu H (2013) A data warehouse solution for analyzing RFID-based baggage tracking data. In: MDM, pp 283–292

  4. Ahmed T, Calders T, Pedersen TB (2015) Mining risk factors in RFID baggage tracking data. In: MDM, pp 235–242

  5. Baba AI, Lu H, Pedersen TB, Xie X (2013) A graph model for false negative handling in indoor RFID tracking data. In: SIGSPATIAL/GIS, pp 454–457

  6. Baba AI, Lu H, Pedersen TB, Xie X (2014) Handling false negatives in indoor RFID data. In: MDM, pp 117–126

  7. Berenyi Z, Charaf H (2008) Retrieving frequent walks from tracking data in RFID-equipped warehouses. In: HSI, pp 663 –667

  8. Chawathe SS, Krishnamurthy V, Ramachandran S, Sarma SE (2004) Managing RFID data. In: VLDB, pp 1189–1195

  9. Elmasri R, Wuu GTJ, Kim YJ (1990) The time index: An access structure for temporal data. In: VLDB, pp 1–12

  10. Gonzalez H, Han J, Li X, Klabjan D (2006) Warehousing and analyzing massive RFID data sets. In: ICDE, pp 83–92

  11. Han J, Gonzalez H, Li X, Klabjan D (2006) Warehousing and mining massive RFID data sets. In: ADMA, pp 1–18

  12. Jensen CS, Lin D, Ooi BC, Zhang R (2006) Effective density queries on continuously moving objects. In: ICDE, pp 71–81

  13. Jensen CS, Lu H, Yang B (2009) Graph model based indoor tracking. In: MDM, pp 122–131

  14. Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: SSTD, pp 208–227

  15. Lai C, Wang L, Chen J, Meng X, Zeitouni K (2007) Effective density queries for moving objects in road networks. In: WAIM, pp 200–211

  16. Li X, Han J, Lee JG, Gonzalez H (2007) Traffic density-based discovery of hot routes in road networks. In: SSTD, pp 441–459

  17. López I F V, Snodgrass R T, Moon B (2005) Spatiotemporal aggregate computation: a survey. TKDE 17(2):271–286

    Google Scholar 

  18. Lu H, Yang B, Jensen CS (2011) Spatio-temporal joins on symbolic indoor tracking data. In: ICDE, pp 816–827

  19. Lehman P L, Yao S B (1981) Efficient locking for concurrent operations on B-trees. TODS 6(4):650– 670

    Article  Google Scholar 

  20. Nascimento MA, Silva JRO, Theodoridis Y (1999) Evaluation of access structures for discretely moving points. In: SSTD, pp 171–188

  21. Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-temporal data warehouses. In: ICDE, pp 166–175

  22. Radaelli L, Sabonis D, Lu H, Jensen CS (2013) Identifying typical movements among indoor objects - concepts and empirical study. In: MDM, pp 197–206

  23. Romero M, Brisaboa NR, Rodríguez MA (2012) The SMO-index: a succinct moving object structure for timestamp and interval queries. In: SIGSPATIAL/GIS, pp 498–501

  24. Tao Y, Papadias D (2001) MV3R-Tree: A spatio-temporal access method for timestamp and interval queries. In: VLDB, pp 431–440

  25. Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-temporal aggregation using sketches. In: ICDE, pp 214–225

  26. Theodoridis Y, Vazirgiannis M, Sellis TK (1996) Spatio-temporal indexing for large multimedia applications. In: ICMCS, pp 441–448

  27. Wang F, Liu P (2005) Temporal management of RFID data. In: VLDB, pp 1128–1139

  28. Worboys MF (2011) Modeling indoor space. In: ISA, pp 1–6

  29. Xie X, Lu H, Pedersen T B (2015) Distance-aware join for indoor moving objects. TKDE 27(2):428– 442

    Google Scholar 

  30. Yang B, Lu H, Jensen CS (2010) Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In: EDBT, pp 335–346

Download references

Acknowledgments

This work is supported by the BagTrack project funded by the Danish National Advanced Technology Foundation under grant no. 010-2011-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Pedersen, T.B. & Lu, H. Finding dense locations in symbolic indoor tracking data: modeling, indexing, and processing. Geoinformatica 21, 119–150 (2017). https://doi.org/10.1007/s10707-016-0276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0276-8

Keywords

Navigation