Skip to main content
Log in

Support vector regression with modified firefly algorithm for stock price forecasting

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The support vector regression (SVR) has been employed to deal with stock price forecasting problems. However, the selection of appropriate kernel parameters is crucial to obtaining satisfactory forecasting performance. This paper proposes a novel approach for forecasting stock prices by combining the SVR with the firefly algorithm (FA). The proposed forecasting model has two stages. In the first stage, to enhance the global convergence speed, a modified version of the FA, which is termed the MFA, is developed in which the dynamic adjustment strategy and the opposition-based chaotic strategy are introduced. In the second stage, a hybrid SVR model is proposed and combined with the MFA for stock price forecasting, in which the MFA is used to optimize the SVR parameters. Finally, comparative experiments are conducted to show the applicability and superiority of the proposed methods. Experimental results show the following: (1) Compared with other algorithms, the proposed MFA algorithm possesses superior performance, and (2) The proposed MFA-SVR prediction procedure can be considered as a feasible and effective tool for forecasting stock prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  2. Armano G, Marchesi M, Murru A (2005) A hybrid genetic-neural architecture for stock indexes forecasting. Inf Sci 170(1):3–33

    Article  MathSciNet  Google Scholar 

  3. Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl 19(8):1165–1195

    Article  Google Scholar 

  4. Bansal JC, Josh SK, Nagar AK (2018) Fitness varying gravitational constant in GSA. Appl Intell 3:1–16

    Google Scholar 

  5. Bisoi R, Dash P K (2014) A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Appl Soft Comput 19(6):41–56

    Article  Google Scholar 

  6. Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econ 31(3):307–327

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollerslev T, Marrone J, Xu L, Zhou H (2014) Stock return predictability and variance risk premia: statistical inference and international evidence. J Financ Quant Anal 49(3):633–661

    Article  Google Scholar 

  8. Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control Revised Ed. San Francisco, Holden-Day

    MATH  Google Scholar 

  9. Cao L, Tay FEH (2001) Financial forecasting using support vector machines. Neural Comput Appl 10 (2):184–192

    Article  MATH  Google Scholar 

  10. Chang PC, Liu CH (2008) A TSK type fuzzy rule based system for stock price prediction. Expert Syst Appl 34(1):135–144

    Article  MathSciNet  Google Scholar 

  11. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1-3):131–159

    Article  MATH  Google Scholar 

  12. Chen X, Zhou Y, Tang Z, Luo Q (2017) A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems. Appl Soft Comput 58:104–114

    Article  Google Scholar 

  13. Chen W (2015) Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A 429:125–139

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen W, Wang Y, Gupta P, Mehlawat M K (2018) A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints. Appl Intell 48:2996–3018

    Article  Google Scholar 

  15. Chen W, Wang Y, Mehlawat MK (2016) A hybrid FA-SA algorithm for fuzzy portfolio selection with transaction costs. Ann Oper Res 269(1-2):129–147

    Article  MathSciNet  MATH  Google Scholar 

  16. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  17. Dai W, Shao Y E, Lu CJ (2013) Incorporating feature selection method into support vector regression: for stock index forecasting. Neural Comput Appl 23(6):1551–1561

    Article  Google Scholar 

  18. Darrat AF, Zhong M (2000) On testing the random-walk hypothesis: a model-comparison approach. Financ Rev 35(3):105–124

    Article  Google Scholar 

  19. El-Shorbagy MA, Mousa AA, Nasr SM (2016) A chaos-based evolutionary algorithm for general nonlinear programming problems. Chaos Solitons Fractals 85(2):8–21

    Article  MathSciNet  MATH  Google Scholar 

  20. Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  MATH  Google Scholar 

  21. Fister I, Jr I f, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13(1):34–46

    Article  Google Scholar 

  22. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  23. Gavrishchaka VV, Banerjee S (2006) Support vector machine as an efficient framework for stock market volatility forecasting. Comput manag sci 3(2):147–160

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghelardoni L, Ghio A, Anguita D (2013) Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans Smart Grid 4(1):549–556

    Article  Google Scholar 

  25. Gu J, Zhu M, Jiang L (2011) Housing price forecasting based on genetic algorithm and support vector machine. Expert Syst Appl 38(4):3383–3386

    Article  Google Scholar 

  26. Guo Y, Han S, Shen C, Li Y, Yin X, Bai Y (2018) An adaptive SVR for high-frequency stock price forecasting. IEEE Access 6(99):11397–11404

    Article  Google Scholar 

  27. Hafezi R, Shahrabi J, Hadavandi E (2015) A bat-neural network multi-agent system (BNNMAS) for stock price prediction: case study of DAX stock price. Appl Soft Comput 29:196–210

    Article  Google Scholar 

  28. Hansen JV, Nelson RD (1997) Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans Neural Netw 8(4):863–873

    Article  Google Scholar 

  29. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence, USA. University of Michigan

  30. Hong WC, Dong Y, Zheng F, Lai CY (2011) Forecasting urban traffic flow by SVR with continuous ACO. Appl Math Model 35(3):1282–1291

    Article  MathSciNet  MATH  Google Scholar 

  31. Hong WC, Pai PF (2006) Predicting engine reliability by support vector machines. Int J Adv Manuf Technol 28(1-2):154–161

    Article  Google Scholar 

  32. Hong WC, Pai PF (2007) Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour Manag 21(2):495–513

    Article  Google Scholar 

  33. Huang CF (2012) A hybrid stock selection model using genetic algorithms and support vector regression. Appl Soft Comput 12(2):807–818

    Article  MathSciNet  Google Scholar 

  34. Huang H, Wei X, Zhou Y (2016) A sparse method for least squares twin support vector regression. Neurocomputing 211:150–158

    Article  Google Scholar 

  35. Huang H, Wei X, Zhou Y (2018) Twin support vector machines: A survey. Neurocomputing 300:34–43

    Article  Google Scholar 

  36. Huang SC, Chuang PJ, Wu CF, Lai HJ (2010) Chaos-based support vector regressions for exchange rate forecasting. Expert Syst Appl 37(12):8590–8598

    Article  Google Scholar 

  37. Huang SC, Wu TK (2010) Combining wavelet-based feature extractions with relevance vector machines for stock index forecasting. Expert Syst 25(2):133–149

    Article  Google Scholar 

  38. Hussain AJ, Knowles A, Lisboa PJG, El-Deredy W (2008) Financial time series prediction using polynomial pipelined neural networks. Expert Syst Appl 35(3):1186–1199

    Article  Google Scholar 

  39. Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958

    Article  Google Scholar 

  40. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  41. Khare K, Darekar O, Gupta P, Attar V Z (2017) Short term stock price prediction using deep learning. In: 2017 2nd IEEE international conference on recent trends in electronics information & communication technology (RTEICT). IEEE, pp 482–486

  42. Kim EY (2017) MRF model based real-time traffic flow prediction with support vector regression. Electron Lett 53(4):243–245

    Article  Google Scholar 

  43. Kim JH, Shamsuddin A, Lim K P (2011) Stock return predictability and the adaptive markets hypothesis: evidence from century-long U.S. data. J Empir Financ 18(5):868–879

    Article  Google Scholar 

  44. Kim KJ (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1):307–319

    Article  Google Scholar 

  45. Kim KJ, Han I (2000) Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst Appl 19(2):125–132

    Article  Google Scholar 

  46. Li XL, Shao ZJ, Qian J (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng Theory Pract 22:32–38. (in Chinese)

    Google Scholar 

  47. Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824

    Article  Google Scholar 

  48. Liu CF, Yeh CY, Lee SJ (2012) Application of type-2 neuro-fuzzy modeling in stock price prediction. Appl Soft Comput 12(4):1348–1358

    Article  Google Scholar 

  49. Lo AW, Mamaysky H, Wang J (2002) Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. In: Advanced Trading Rules (2nd edn.) 55(4):42–111

  50. Long NC, Meesad P, Unger H (2015) A highly accurate firefly based algorithm for heart disease prediction. Expert Syst Appl 42(21):8221–8231

    Article  Google Scholar 

  51. Lu CJ (2013) Hybridizing nonlinear independent component analysis and support vector: regression with particle swarm optimization for stock index forecasting. Neural Comput Appl 23(7-8):2417–2427

    Article  Google Scholar 

  52. Majhi B, Rout M, Baghel V (2014) On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices. J King Saud University-Comput Inf Sci 26 (3):319–331

    Google Scholar 

  53. Majhi R, Panda G, Sahoo G, Panda A (2008) Prediction of S&P 500 and DJIA stock indices using particle swarm optimization technique. In: 2008 IEEE world congress on computational intelligence evolutionary computation (CEC). IEEE, pp 1276–1282

  54. Malkiel BG (2003) The efficient market hypothesis and its critics. J Econ Perspect 17(1):59–82

    Article  Google Scholar 

  55. Marichelvam MK, Prabaharan T, Yang XS (2014) A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans Evol Comput 18(2):301–305

    Article  Google Scholar 

  56. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  57. Mostafa MM (2010) Forecasting stock exchange movements using neural networks: empirical evidence from Kuwait. Expert Syst Appl 37(9):6302–6309

    Article  Google Scholar 

  58. Oh SK, Pedrycz W, Park HS (2006) Genetically optimized fuzzy polynomial neural networks. IEEE Trans Fuzzy Syst 14(1):125–144

    Article  Google Scholar 

  59. Ozer AB (2010) CIDE: Chaotically initialized differential evolution. Expert Syst Appl 37(6):4632–4641

    Article  Google Scholar 

  60. Pérez-cruz F, Afonso-rodríguez JA, Giner J (2003) Estimating GARCH models using support vector machines. Quant Financ 3(3):163–172

    Article  MathSciNet  MATH  Google Scholar 

  61. Phan DHB, Sharma S S, Narayan P K (2015) Stock return forecasting: some new evidence. Int Rev Financ Anal 40:38–51

    Article  Google Scholar 

  62. Qi M, Zhang GP (2003) Trend time-series modeling and forecasting with neural networks. IEEE Trans Neural Netw 19(5):808–816

    Google Scholar 

  63. Qiu M, Song Y, Akagi F (2016) Application of artificial neural network for the prediction of stock market returns: the case of the Japanese stock market. Chaos Solitons Fractals 85:1–7

    Article  MathSciNet  Google Scholar 

  64. Rahmani A, Mirhassani SA (2014) A hybrid firefly-genetic algorithm for the capacitated facility location problem. Inf Sci 283(4):70–78

    Article  MathSciNet  MATH  Google Scholar 

  65. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  66. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481

    Article  Google Scholar 

  67. Singh R, Srivastava S (2016) Stock prediction using deep learning. Multimed Tools Appl 76(18):18569–18584

    Article  Google Scholar 

  68. Senol D, Ozturan M (2008) Stock price direction prediction using artificial neural network approach: the case of Turkey. J Artif Intell Res 1(2):92–107

    Google Scholar 

  69. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on intelligent agents, web technologies and internet commerce, pp 695–701

  70. Vapnik V, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Proces Syst 9:281–287

    Google Scholar 

  71. Wang H, Wang W, Cui L, Sun H, Zhao J, Wang Y, Xue Y (2018) A hybrid multi-objective firefly algorithm for big data optimization. Appl Soft Comput 69:806–815

    Article  Google Scholar 

  72. Wang H, Zhou X, Sun H, Yu X, Zhao J, Zhang H, Cui L (2017) Firefly algorithm with adaptive control parameters. Soft Comput 21(17):5091–5102

    Article  Google Scholar 

  73. Wang HB, Fan CC, Tu XY (2016) AFSAOCP: a novel artificial fish swarm optimization algorithm aided by ocean current power. Appl Intell 45:1–16

    Article  Google Scholar 

  74. Wang J, Hou R, Wang C, Shen L (2016) Improved -̌Support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Appl Soft Comput 49:164–178

    Article  Google Scholar 

  75. Xiong T, Bao Y, Hu Z (2014) Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge-Based Syst 55:87–100

    Article  Google Scholar 

  76. Yang CH, Tsai SW, Chuang LY, Yang CH (2012) An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization. Appl Math Comput 219(1):260–279

    MathSciNet  MATH  Google Scholar 

  77. Yang XS (2008) Nature-inspired metaheuristic algorithms: Luniver Press

  78. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1:36–50

    Article  Google Scholar 

  79. Yeh CY, Huang CW, Lee SJ (2011) A multiple-kernel support vector regression approach for stock market price forecasting. Expert Syst Appl 38(3):2177–2186

    Article  Google Scholar 

  80. Yu L, Wang S, Lai KK (2009) A neural-network-based nonlinear metamodeling approach to financial time series forecasting. Appl Soft Comput 9(2):563–574

    Article  Google Scholar 

  81. Yu S, Zhu S, Ma Y, Mao D (2015) Enhancing firefly algorithm using generalized opposition-based learning. Computing 97(7):741–754

    Article  MathSciNet  MATH  Google Scholar 

  82. Zarandi MHF, Rezaee B, Turksen IB, Neshat E (2009) A type-2 fuzzy rule-based expert system model for stock price analysis. Expert Syst Appl 36(1):139–154

    Article  Google Scholar 

  83. Zhao W, Tao T, Zio E, Wang W (2016) A novel hybrid method of parameters tuning in support vector regression for reliability prediction: particle swarm optimization combined with analytical selection. IEEE Trans Reliab 65(3):1393–1405

    Article  Google Scholar 

  84. Zhou Y, Luo Q, Liu J (2014) Glowworm swarm optimization for dispatching system of public transit vehicles. Neural Process Lett 40(1):25–33

    Article  Google Scholar 

  85. Zhou Y, Zhou G, Zhang J (2015) A hybrid glowworm swarm optimization algorithm to solve constrained multimodal functions optimization. Optimization 64(4):1057–1080

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Beijing Social Science Fund (No. 18YJB007). The author Yu-Fan Teng acknowledges the support by Graduate Science and Technology Innovation Foundation from the Capital University of Economics and Business, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Appendix

Appendix

Proof of Theorem

Assume that, among N fireflies, their brightness are in sequential order. Namely, firefly 1 is the brightest, and firefly N is the worst.

In the following, we will prove the theorem by induction.

STEP 1: Suppose that there are two fireflies. Then we have

$$\begin{array}{@{}rcl@{}} &&\frac{r_{1, 2}(t + 1)}{r_{1, 2}(t)}\\&=&\frac{||x_{1}(t) - x_{2}(t) - \beta_{0}e^{-{\gamma} {r_{1,2}^{2}}}(x_{1}(t) - x_{2}(t)) - \alpha(t)({\mu} - \frac{1}{2})||}{||x_{1}(t)-x_{2}(t)||}\\ &\leq&1-\beta_{0}e^{-\gamma r_{1,2}^{2}}+\frac{||\alpha(t)(\mu-\frac{1}{2}||)}{||x_{1}(t)-x_{2}(t)||}. \end{array} $$
(18)

Note that

$$ {\lim_{t\to+\infty}}r_{1, 2}(t)={\lim_{t \to +\infty}}{{\prod}_{1}^{t}}\frac{r_{1,2}(t)}{r_{1,2}(t-1)}*r_{1,2}(0). $$
(19)

Then, according to (18) and (19), we have

$$\begin{array}{@{}rcl@{}} 0\leq {\lim_{t \to +\infty}}r_{1,2}(t)&\leq&{\lim_{t \to +\infty}}{{\prod}_{1}^{t}} \left( 1-\beta_{0}e^{-\gamma r_{1, 2}^{2}}\right.\\ &&+ \left. \frac{\alpha(t)(\mu-\frac{1}{2})}{||x_{1}(t)-x_{2}(t)||}\right)*r_{1, 2}(0) \end{array} $$
(20)

Because 0 < β0 < 1, we have \(0<1-\beta _{0}e^{-\gamma r_{1, 2}^{2}}<1\). Moreover, we know that \(\lim \limits _{t\rightarrow +\infty }\alpha (t)= 0\). Thus, according to (20), we have

$$ 0\leq{\lim_{t\to+\infty}}r_{1,2}(t)\leq 0. $$
(21)

Furthermore, we have \({\lim \limits _{t\to +\infty }}r_{1,2}(t)= 0\). That’s to say,

$$ \lim_{t\to +\infty}x_{1}(t)=\lim_{t\to +\infty}x_{2}(t). $$
(22)

STEP 2: Let k ≥ 2 be an integer. Suppose that k fireflies are convergent. Namely, for some xi, xj, i,j = 1, 2,…,k, and for arbitrary 𝜖 > 0, there exists T > 0, such that t > T, implies rij < 𝜖.

Next, we will prove k + 1 fireflies are also convergent. Here, the reduction to absurdity is employed.

Suppose that k + 1 fireflies are not convergent, i.e., for arbitrary T > 0, there exists t > T such that r1,k+ 1(t) > 𝜖. If the firefly k + 1 is attracted by firefly s(1 ≤ sk), then we have

$$\begin{array}{@{}rcl@{}} \frac{r_{1, k + 1}(t + 1)}{r_{1, k + 1}(t)}&=&\frac{||x_{1}(t)-x_{k + 1}(t)-\beta_{0}e^{-\gamma r_{s, k + 1}^{2}}\left( x_{s}(t)-x_{k + 1}(t)\right)-\alpha(t)(\mu-\frac{1}{2})||}{||x_{1}(t)-x_{k + 1}(t)||}\\ &=& \frac{||x_{1}(t)-x_{k + 1}(t)-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\left( x_{1}(t)-x_{k + 1}(t)+x_{s}(t)-x_{1}(t)\right)-\alpha(t)(\mu-\frac{1}{2})||} {||x_{1}{(t)}-x_{k + 1}(t)||}\\ &=&\frac{||(1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}})\left( x_{1}(t)-x_{k + 1}(t)\right)-\beta_{0}e^{-\gamma r_{s, k + 1}^{2}}\left( x_{s}(t)-x_{1}(t)\right)-\alpha(t)(\mu-\frac{1}{2})||} {||x_{1}{(t)}-x_{k + 1}(t)||}\\ &\leq& 1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}+\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\frac{||x_{s}{(t)}-x_{1}(t)||}{||x_{1}{(t)}-x_{k + 1}(t)||}+\frac{||\alpha(t) (\mu-\frac{1}{2})||}{||x_{1}{(t)}-x_{k + 1}(t)||}\\ &=&1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\left( 1-\frac{||x_{s}{(t)}-x_{1}(t)||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right)+\frac{||\alpha(t) (\mu-\frac{1}{2})||}{||x_{1}{(t)}-x_{k + 1}(t)||} \end{array} $$
(23)

Note that

$$ {\lim_{t\to +\infty}}r_{1, k + 1}(t)={\lim_{t \to +\infty}}{{\prod}_{1}^{t}}\frac{r_{1,k + 1}(t)}{r_{1,k + 1}(t-1)}*r_{1,k + 1}(0) $$
(24)

Furthermore, from (23), and (24), we have

$$ 0\leq{\lim_{t\to+\infty}}r_{1,k + 1}(t)\leq{\lim_{t\to +\infty}}{{\prod}_{1}^{t}}\left\{1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\left( 1-\frac{||x_{s}{(t)}-x_{1}(t)||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right)+\frac{||\alpha(t) (\mu-\frac{1}{2})||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right\}*r_{1k + 1}(0) $$
(25)

From assumptions, we know that k fireflies are convergent, i.e., 0 < ||x1(t) − xs(t)|| < 𝜖, and k + 1th firefly is not convergent, namely, ||x1(t) − xk+ 1(t)|| > 𝜖. Namely, 0 < ||x1(t) − xs(t)|| < 𝜖 < ||x1(t) − xk+ 1(t)||. Moreover, we know that \(0<1-\beta _{0}e^{-\gamma r_{s,k + 1}^{2}}<1\). Thus, we have

$$\begin{array}{@{}rcl@{}} & &{\lim_{t\to +\infty}}\left\{1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\left( 1-\frac{||x_{s}{(t)}-x_{1}(t)||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right)\right \}\\ &&<1 \end{array} $$
(26)

Therefore, according to (26), and \(\lim \limits _{t\rightarrow +\infty }\alpha (t)= 0\), we have

$$\begin{array}{@{}rcl@{}} &&{\lim_{t \to +\infty}}{{\prod}_{1}^{t}}\left\{ 1-\beta_{0}e^{-\gamma r_{s,k + 1}^{2}}\left( 1-\frac{||x_{s}{(t)}-x_{1}(t)||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right)\right.\\ &&+ \left. \frac{||\alpha(t) (\mu-\frac{1}{2})||}{||x_{1}{(t)}-x_{k + 1}(t)||}\right\}*r_{1k + 1}(0)= 0 \end{array} $$
(27)

Furthermore, from (25) and (27), we have \({\lim \limits _{t \to +\infty }}r_{1, k + 1}(t)\) = 0. That’s to say, k + 1th firefly is convergent, i.e., for some 𝜖 > 0, there exists T > 0, such that t > T, implies r1k+ 1(t) < 𝜖, which is contrary with assumption. Therefore, we have k + 1 fireflies are convergent.

Based on the STEP 1 and STEP 2, the theorem is proved. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Teng, YF. & Chen, W. Support vector regression with modified firefly algorithm for stock price forecasting. Appl Intell 49, 1658–1674 (2019). https://doi.org/10.1007/s10489-018-1351-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1351-7

Keywords

Navigation