Skip to main content
Log in

An extension on super slacks-based measure DEA approach

  • DEA in Data Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In order to break the tie of efficient decision-making units, super-efficiency data envelopment analysis is proposed to fully discriminate them. Recently, a slacks-based version of the super slacks-based measure (S-SBM) is developed and a novel two-stage approach is proposed to calculate both super-efficiency score by the S-SBM model and efficiency score by the slacks-based measure model. In this paper, we extend the approach to consider continuity of efficiency scores. We illustrate the discontinuity of efficiency measure, and define a continuous slacks-based measure which is proved continuous and directly calculated. An interesting efficiency zone category is also provided. In addition, this paper investigates the relationship among the super-efficiency measures of the proposed approach and some existing approaches under variable returns to scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The standard input- and output-oriented VRS super-efficiency DEA models are based on the BCC model, i.e., the input- and output-oriented BCC models where a DMU under evaluation is excluded from the reference set.

  2. In Lee et al. (2011), they don’t use the concept, ‘non-radial measure’. However, the component of their efficiency measure reflecting the output surpluses or input savings can be regarded as non-radial.

  3. The notation of Lipschitz continuity in Scheel and Scholtes (2003) is stronger than the standard definition of continuity. In this study, we use the standard definition of continuity to solve the efficiency continuity problem. Hence, an efficiency measure is continuous if small perturbations of the input-output data result in only small changes in the efficiency score.

  4. We use the same notation as model (2). The same below.

  5. Here, DMU A is not the one in Fig. 1. It is just used as a notation for proof. The same below for DMU B.

References

  • Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39, 1261–1264.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30, 1078–1092.

    Article  Google Scholar 

  • Banker, R. D., Das, S., & Datar, S. M. (1989). Analysis of cost variances for management control in hospitals. Research in Governmental and Nonprofit Accounting, 5, 268–291.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functions. Naval Research Logistics Quarterly, 9, 181–185.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Thrall, R. M. (1991). A structure for classifying and characterizing efficiency and inefficiency in data envelopment analysis. The Journal of Productivity Analysis, 2, 197–237.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Wei, Q. L., & Huang, Z. M. (1989). Cone ratio data envelopment analysis and multi-objective programming. International Journal of Systems Sciences, 20, 1099–1118.

    Article  Google Scholar 

  • Charnes, A., Haag, S., Jaska, P., & Semple, J. (1992). Sensitivity of efficiency classifications in the additive model of data envelopment analysis. International Journal of Systems Science, 23, 789–798.

    Article  Google Scholar 

  • Charnes, A., & Zlobec, S. (1989). Stability of efficiency evaluations in data envelopment analysis. ZOR—Methods and models of Operations Research, 33, 167–179.

    Google Scholar 

  • Chen, C. M. (2013). Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA. European Journal of Operational Research, 226, 258–267.

    Article  Google Scholar 

  • Chen, J. X., Deng, M. R., & Gingras, S. (2011). A modified super-efficiency measure based on simultaneous input-output projection in data envelopment analysis. Computers and Operations Research, 38, 496–504.

    Article  Google Scholar 

  • Chen, Y. (2004). Ranking efficient units in DEA. Omega, 32, 213–219.

    Article  Google Scholar 

  • Chen, Y. (2005). Measuring super-efficiency in DEA in the presence of infeasibility. European Journal of Operational Research, 161, 545–551.

    Article  Google Scholar 

  • Chen, Y., & Liang, L. (2011). Super-efficiency DEA in the presence of infeasibility: One model approach. European Journal of Operational Research, 213, 359–360.

    Article  Google Scholar 

  • Cook, W. D., Liang, L., Zha, Y., & Zhu, J. (2009). A modified super-efficiency DEA model for infeasibility. Journal of Operational Research Society, 69, 276–281.

    Article  Google Scholar 

  • Fang, H. H., Lee, H. S., Hwang, S. N., & Chung, C. C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega, 41, 731–734.

    Article  Google Scholar 

  • Hackman, S. T., & Russell, R. R. (1995). Duality and continuity. Journal Productivity Analysis, 6, 99–116.

    Article  Google Scholar 

  • Lee, H. S., Chu, C. W., & Zhu, J. (2011). Super-efficiency DEA in the presence of infeasibility. European Journal of Operational Research, 212, 141–147.

    Article  Google Scholar 

  • Lovell, C. A. K., & Rouse, A. P. B. (2003). Equivalent standard DEA models to provide super-efficiency scores. Journal of the Operational Research Society, 54, 101–108.

    Article  Google Scholar 

  • Pastor, J. T., Ruiz, J. L., & Sirvent, I. (1999). An enhanced DEA Russell graph efficiency measure. European Journal of Operational Research, 115, 596–607.

    Article  Google Scholar 

  • Russell, R. R. (1990). Continuity of measures of technical efficiency. Journal of Economic Theory, 51, 255–267.

    Article  Google Scholar 

  • Scheel, H., & Scholtes, S. (2003). Continuity of DEA efficiency measures. Operational Research, 51, 149–159.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (1998a). Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the Operational Research Society, 49, 1060–1071.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (1998b). Stability regions for maintaining efficiency in data envelopment analysis. European Journal of Operational Research, 108, 127–139.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (1999). Infeasibility of super-efficiency data envelopment analysis models. INFOR, 37, 174–187.

    Google Scholar 

  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130, 498–509.

    Article  Google Scholar 

  • Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 143, 32–41.

    Article  Google Scholar 

  • Wilson, P. (1995). Detecting influential observations in data envelopment analysis. Journal of Productivity Analysis, 6, 27–45.

    Article  Google Scholar 

  • Xue, M., & Harker, P. T. (2002). Note: Ranking DMUs with infeasible super-efficiency DEA models. Management Science, 48, 705–710.

    Article  Google Scholar 

  • Zhu, J. (1996). Robustness of the efficient DMUs in data envelopment analysis. European Journal of Operational Research, 90, 451–460.

    Article  Google Scholar 

  • Zhu, J. (2001). Super-efficiency and DEA sensitivity analysis. European Journal of Operational Research, 129, 443–455.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the comments and suggestions from two anonymous reviewers on an earlier version of this paper. This research was supported by National Natural Science Foundation of China under Grants (Nos. 71601064, 71471053 and 71271196), Natural Science Foundation of Anhui Province under Grant (No. 1708085QG161), the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China (No. 71110107024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Super-efficiency models under VRS

The standard input-oriented VRS super-efficiency DEA model for \(DMU_o \) can be expressed as:

$$\begin{aligned}&{\begin{array}{ll} {\min } \theta \\ \end{array} } \nonumber \\&{\begin{array}{ll} {s.t.} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le \theta x_{io} ,\quad \forall i} \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} } \ge y_{ro} ,\quad \forall r} \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \\&{\begin{array}{ll} \quad \quad {\lambda _j \ge 0} \\ \end{array} },\quad \forall j,\quad j\ne o, \nonumber \\&{\begin{array}{ll} \quad \quad {\theta \,\, \hbox {free}} \\ \end{array} }. \nonumber \end{aligned}$$
(11)

Model (11) can be infeasible considering its VRS assumption. For example, model (11) is infeasible if an output component of \(DMU_o \) is the unique maximum among all DMUs (Seiford and Zhu 1999). Similarly, the standard output-oriented VRS super-efficiency DEA model for \(DMU_o \) can be expressed as:

$$\begin{aligned}&{\begin{array}{ll} {\max } \phi \\ \end{array} } \nonumber \\&{\begin{array}{ll} {s.t.} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le x_{io} ,\forall i} \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} } \ge \phi y_{ro} ,\forall r} \\ \end{array} }, \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\lambda _j \ge 0} \\ \end{array} },\forall j,j\ne o. \nonumber \end{aligned}$$
(12)

The optimal value of model (12) can be less than unity. Similarly, model (12) is infeasible if an input component of \(DMU_o \) is the unique minimum among all DMUs (Seiford and Zhu 1999).

To solve the problem of infeasibility, Cook et al. (2009) developed the modified input-oriented VRS super-efficiency DEA model as follows:

$$\begin{aligned}&{\begin{array}{ll} {\min } {\tau +M\times \beta } \\ \end{array} } \nonumber \\&{\begin{array}{ll} {s.t.} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le (1+\tau )x_{io} ,\quad \forall i,} \\ \end{array} } \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } (1-\beta )y_{ro} ,\quad \forall r} \\ \end{array} }, \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\beta \ge 0,\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }. \nonumber \end{aligned}$$
(13)

And the output-oriented VRS super-efficiency DEA model is:

$$\begin{aligned}&{\begin{array}{ll} {\min } {\gamma +M\times \delta } \\ \end{array} } \nonumber \\&{\begin{array}{ll} {s.t.} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le (1+\delta )x_{io} ,\quad \forall i,} \\ \end{array} } \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } (1-\gamma )y_{ro} ,\quad \forall r} \\ \end{array} }, \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{l} j=1 \\ j\ne o \\ \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\delta \ge 0,\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }. \nonumber \end{aligned}$$
(14)

Note that models (13) and (14) are always feasible. If models (11) and (12) are infeasible, the super-efficiency scores of models (13) and (14) are defined as \(1+\tau +1/{(1-\beta )}\) and \(1+\delta +1/{(1-\gamma )}\), respectively.

Following Cook et al. (2009), a two-step approach was proposed to derive the super-efficiency score (See Lee et al. (2011). Chen and Liang (2011) transformed it into a single DEA-based model. The input-oriented VRS super-efficiency DEA model is shown as follows:

$$\begin{aligned} \begin{array}{l} {\begin{array}{ll} {\min }&{} {\tau +M\times \sum _{r=1}^s {\beta _r } } \\ \end{array} } \\ {\begin{array}{ll} {s.t.}&{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le (1+\tau )x_{io} ,\quad \forall i,} \\ \end{array} } \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } (1-\beta _r )y_{ro} ,\quad \forall r} \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\beta _r \ge 0,\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }. \\ \end{array} \end{aligned}$$
(15)

Corresponding output-oriented VRS super-efficiency DEA model is:

$$\begin{aligned} \begin{array}{l} {\begin{array}{ll} {\min }&{} {\gamma +M\times \sum _{i=1}^m {\delta _i } } \\ \end{array} } \\ {\begin{array}{ll} {s.t.}&{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le (1+\delta _i )x_{io} ,\quad \forall i,} \\ \end{array} } \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } (1-\gamma )y_{ro} ,\quad \forall r} \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o } \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\delta _i \ge 0,\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }. \\ \end{array} \end{aligned}$$
(16)

The super-efficiency scores of models (15) and (16) are \(1+\tau +\frac{1}{R}\sum _{r\in R} {1/{(1-\beta _r )}} \), R is the set of \(\beta _r >0\), and \(\frac{1}{I}\sum _{i\in I} {(1+\delta _i )} +1/{(1-\gamma )}\), I is the set of \(\delta _i >0\), respectively.

Different from Cook et al. (2009) and Lee et al. (2011) and Chen et al. (2011)’s VRS super-efficiency DEA model considered simultaneous input–output projection. Its super-efficiency score is defined as the ratio of input and output efficiencies. For a DMU that is not extreme-efficient (see the details below), the super-efficiency score can be measured through the following model:

$$\begin{aligned}&{\begin{array}{ll} {\min } {{\theta _o^{sr} }/{\varphi _o^{sr} }} \\ \end{array} } \nonumber \\&{\begin{array}{ll} {s.t.} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o } \end{array}}^n {\lambda _j x_{ij} } \le \theta _o^{sr} x_{io} ,\quad \forall i,} \\ \end{array} } \nonumber \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } \varphi _o^{sr} y_{ro} ,\quad \forall r,} \\ \end{array} } \\&{\begin{array}{ll} \quad \quad {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array} }^n {\lambda _j =1} } \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }, \nonumber \\&{\begin{array}{ll} \quad \quad {0<\theta _o^{sr} \le 1,\varphi _o^{sr} \ge 1} \\ \end{array} }. \nonumber \end{aligned}$$
(17)

For an extreme-efficient DMU, the super-efficiency score can be measured through the following model:

$$\begin{aligned} \begin{array}{l} {\begin{array}{ll} {\min }&{} {{\theta _o^{sr} }/{\varphi _o^{sr} }} \\ \end{array} } \\ {\begin{array}{ll} {s.t.}&{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j x_{ij} } \le \theta _o^{sr} x_{io} ,\quad \forall i} \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j y_{rj} \ge } \varphi _o^{sr} y_{ro} ,\quad \forall r,} \\ \end{array} } \\ {\begin{array}{ll} \quad \quad &{} {\sum \limits _{\begin{array}{c} {j=1} \\ {j\ne o} \end{array}}^n {\lambda _j =1} } \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\lambda _j \ge 0,\quad \forall j,\quad j\ne o} \\ \end{array} }, \\ {\begin{array}{ll} \quad \quad &{} {\theta _o^{sr} \ge 1} \\ \end{array} },0<\varphi _o^{sr} \le 1. \\ \end{array} \end{aligned}$$
(18)

The efficiency \({\theta _o^{sr} }/{\varphi _o^{sr} }\) can be interpreted as a product of the input- and output-oriented standard VRS super-efficiency scores.

Appendix 2: Proofs of Theorems

Theorem 1

The efficiency measure in Eq. (5), i.e. \(CSBM_o \), is continuous.

Proof

Note that model (4) is equivalent to SBM model if \(DMU_o \) is not SBM-efficient as shown in Fang et al. (2013). According to Chen (2013), we only need to examine the boundary conditions in order to prove continuity of Eq. (5), i.e. the discontinuous gap between the SBM score of a weakly efficient DMU AFootnote 5 and S-SBM score of an SBM-efficient DMU B (DMU A is the projected DMU of DMU B). Without loss of generality, we only consider the case of data perturbation for \(DMU_o \) under evaluation. Assume there exists a data perturbation \(\delta >0\) for \(DMU_o \) such that \(\left\| {({X}'_o ,{Y}'_o )-(X_o ,Y_o )} \right\| \le \delta \). Assume that \(({X}'_o ,{Y}'_o )\) and \((X_o ,Y_o )\) are input–output vectors of DMUs A and B, respectively. Then, \({x}'_{io} =x_{io} +w_i^{-*} ,{y}'_{ro} =y_{ro} -w_r^{+*} \). According to \(\left\| {({X}'_o ,{Y}'_o )-(X_o ,Y_o )} \right\| \le \delta \), we have \(\left| {{x}'_{io} -x_{io} } \right| =w_i^{-*} \le \delta \) and \(0\le \mathop {\lim }\limits _{(X_o ,Y_o )\rightarrow ({X}'_o ,{Y}'_o )} (CSBM_o^B -CSBM_o^A )\le \mathop {\lim }\limits _{\delta \rightarrow 0} (\frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } +\delta /x_{io} }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} } -\delta /y_{io} }-\frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} } })=0\). The efficiency score of DMU A is \(CSBM_o^A =\frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} } }\), and the efficiency score of DMU B is as follows:

$$\begin{aligned} {\textit{CSBM}}_o^B= & {} \frac{1-\frac{1}{m}\sum _{i=1}^m {(s_i^{-*} -w_i^{-*} )/x_{io} } }{1+\frac{1}{s}\sum _{r=1}^s {(s_r^{+*} -w_r^{+*} )/y_{io} } }\le \frac{1-\frac{1}{m}\sum _{i=1}^m {(s_i^{-*} -\delta )/x_{io} } }{1+\frac{1}{s}\sum _{r=1}^s {(s_r^{+*} -\delta )/y_{io} } }\\= & {} \frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } +\delta /x_{io} }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} } -\delta /y_{io} } \end{aligned}$$

Note that \(CSBM_o^B \ge CSBM_o^A \). Then, we have:

$$\begin{aligned} 0\le & {} \mathop {\lim }\limits _{(X_o ,Y_o )\rightarrow ({X}'_o ,{Y}'_o )} (CSBM_o^B -CSBM_o^A )\le \mathop {\lim }\limits _{\delta \rightarrow 0} \left( \frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } +\delta /x_{io} }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} } -\delta /y_{io} }\right. \\&\left. -\frac{1-\frac{1}{m}\sum _{i=1}^m {s_i^{-*} /x_{io} } }{1+\frac{1}{s}\sum _{r=1}^s {s_r^{+*} /y_{io} }}\right) =0 \end{aligned}$$

Then, we have \(\mathop {\lim }\limits _{(X_o ,Y_o )\rightarrow ({X}'_o ,{Y}'_o )} (CSBM_o^B -CSBM_o^A )=0\). So the efficiency measure \(CSBM_k \) in Eq. (5) is continuous. It completes the proof of Theorem 1. \(\square \)

Theorem 2

If model (8) is feasible, then \(\theta ^{*}\ge \eta ^{*}\) and \(\phi ^{*}\ge \phi _0^*\ge 1\).

Proof

If model (8) is feasible, then \(0<\theta _0^*\le 1,\phi _0^*\ge 1\). This leads to a feasible solution of model (11) subject to \(\theta =\theta _0^*\). So the optimal value of model (11) is subject to \(\theta ^{*}\le \theta _0^*\le 1\). Thus leads to a feasible solution of model (8) subject to \(\theta _i =\theta ^{*},\phi _r =1,\forall i,r;\eta =\theta ^{*}\). So \(\theta ^{*}\ge \eta ^{*}\). Analogously, we have \(\phi ^{*}\ge \phi _0^*\ge 1\). It completes the proof of Theorem 2. \(\square \)

Theorem 3

The following is true for model (10):

  1. (i)

    model (10) is always feasible and \(\hat{{\eta }}^{*}\ge 1\).

  2. (ii)

    \(DMU_o \) is extreme-efficient if and only if \(\hat{{\eta }}^{*}>1\).

  3. (iii)

    If model (11) is feasible and \(\theta ^{*}>1\), then \(\theta ^{*}\ge \hat{{\eta }}^{*}>1\).

  4. (iv)

    If model (11) is feasible and \(0<\theta ^{*}\le 1\), then \(\theta ^{*}\le \hat{{\eta }}^{*}=1\).

  5. (v)

    If model (12) is feasible and \(0<\phi ^{*}<1\), then \(1/\phi ^{*}\ge \hat{{\eta }}^{*}>1\).

  6. (vi)

    If model (12) is feasible and \(\phi ^{*}\ge 1\), then \(1/\phi ^{*}\le \hat{{\eta }}^{*}=1\).

Proof

Let \(\hat{{\theta }}_0 =\max \{\hat{{\theta }}_i \}={\mathop {\max }\limits _{i,j} \{x_i^j \}}/{\mathop {\min }\limits _i \{x_i^k \}},\hat{{\phi }}_0 =\min \{\hat{{\phi }}_r \}={\mathop {\min }\limits _{r,j} \{y_r^j \}}/{\mathop {\max }\limits _r \{y_r^k \}}\), then there must exist a feasible solution \((\hat{{\lambda }}_j ,\hat{{\theta }}_0 ,\hat{{\phi }}_0 )\) for model (10) and \(\hat{{\eta }}^{*}\ge 1\). (ii) Assume that \(DMU_o \) is extreme-efficient and \(\hat{{\eta }}^{*}=1\), then \(\hat{{\theta }}_i^*=1,\hat{{\phi }}_r^*=1,\forall i,r\). This leads to feasible solution of models (11) and (12), i.e., \(\theta ^{*}=1,\phi ^{*}=1\). Thus, \(DMU_o \) is not extreme-efficient, a contradiction. So \(\hat{{\eta }}^{*}>1\). On the other hand, assume that \(\hat{{\eta }}^{*}>1\) and \(DMU_o \) is not extreme-efficient. Then, models (11) and (12) are feasible and \(0<\theta ^{*}\le 1,\phi ^{*}\ge 1\). Thus, \(\hat{{\theta }}_i^*=1,\hat{{\phi }}_r^*=1,\forall i,r\) is an optimal solution of model (10). So \(\hat{{\eta }}^{*}=1\), a contradiction. Thus, \(DMU_o \) is extreme-efficient. (iii) If model (11) is feasible and \(\theta ^{*}>1\), then it leads to a feasible solution for model (10) subject to \(\hat{{\theta }}_0 =\theta ^{*},\hat{{\phi }}_r =1,\forall r\). Then, \(\theta ^{*}\ge \hat{{\eta }}^{*}>1\). (iv) If \(0<\theta ^{*}\le 1\), then \(\hat{{\theta }}_i^*=1,\hat{{\phi }}_r^*=1,\forall i,r\) is an optimal solution for model (10). Thus, \(\theta ^{*}\le \hat{{\eta }}^{*}=1\). Analogous to the proofs for (iii) and (iv), It is easy to prove (v) and (vi). It completes the proof of Theorem 3. \(\square \)

Theorem 4

The optimal values of models (8) and (10) are not greater than those of models (17) and (18), respectively, i.e., \(\eta ^{*}\le \rho _1^*\) and \(\hat{{\eta }}^{*}\le \rho _2^*\).

Proof

Let \(\theta _0 =\max \{\theta _i \}=\theta _0^{s1*} ,\phi _0 =\min \{\phi _r \}=\varphi _0^{s1*} \), then there must exist a feasible solution \((\lambda _j ,\theta _i ,\phi _r )\) of model (8) with an objective function value \(\eta \) subject to \(\eta \le \rho _1^*\). Thus, the optimal value of model (8) is not greater than that of model (17), i.e. \(\eta ^{*}\le \rho _1^*\). Similarly, we can have \(\hat{{\eta }}^{*}\le \rho _2^*\). It completes the proof of Theorem 4. \(\square \)

Theorem 5

For a DMU, the super-efficiency score of Eq. (5) is minimal among all the efficiencies in models (11)–(18) if models (11) and (12) are feasible.

Proof

First, it is clear that a DMU’s efficiency score obtained by Eq. (5) is not larger than that calculated by model (8) or (10). For a DMU, if models (11) and (12) are feasible, then the input- and output-oriented super-efficiency score under models (13) and (14) or models (15) and (16) are equal to models (11) and (12), respectively. For an extreme-efficient DMU, we have \(\hat{{\eta }}^{*}>1\) according to (ii) in Theorem 3. As models (11) and (12) are feasible, we have \(\theta ^{*}\ge \hat{{\eta }}^{*}\) and \(1/\phi ^{*}\ge \hat{{\eta }}^{*}\) according to (iii) and (v) in Theorem 3, respectively. It indicates that the super-efficiency score of model (10) is not greater than that of model (11) or (12). For a DMU that is not extreme-efficient, model (8) is feasible. According to Theorem 2, the super-efficiency score under model (8) is not greater than that under models (11) and (12). Hence, the super-efficiency score of Eq. (5) is not greater than that of models (11) or (12). According to Theorem 4, the super-efficiency of models (8) and (10) is not greater than that of models (17) and (18), respectively. Then the super-efficiency score of Eq. (5) is minimal if a DMU is feasible under models (11) and (12). It completes the proof of Theorem 5. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Y., Liang, L. et al. An extension on super slacks-based measure DEA approach. Ann Oper Res 278, 101–121 (2019). https://doi.org/10.1007/s10479-017-2495-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2495-2

Keywords

Navigation