Skip to main content
Log in

Geometric and cognitive differences between logical diagrams for the Boolean algebra \(\mathbb {B}_{4}\)

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Aristotelian diagrams are used extensively in contemporary research in artificial intelligence. The present paper investigates the geometric and cognitive differences between two types of Aristotelian diagrams for the Boolean algebra \(\mathbb {B}_{4}\). Within the class of 3D visualizations, the main geometric distinction is that between the cube-based diagrams (such as the rhombic dodecahedron) and the tetrahedron-based diagrams. Geometric properties such as collinearity, central symmetry and distance are examined from a cognitive perspective, focusing on diagram design principles such as congruence/isomorphism and apprehension. The cognitive effectiveness of the different visualizations is compared for the representation of implication versus opposition relations, and for subdiagram embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amgoud, L., Besnard, P., Hunter, A.: Foundations for a logic of arguments. In: Cabalar, P., Herzig, M.D.A., Pearce, D. (eds.) Logical Reasoning and Computation: Essays Dedicated to Luis Fariñas Del Cerro, pp. 95–107. IRIT, Toulouse (2016)

  2. Amgoud, L., Prade, H.: Can AI models capture natural language argumentation? International Journal of Cognitive Informatics and Natural Intelligence 6(3), 19–32 (2012)

    Article  Google Scholar 

  3. Amgoud, L., Prade, H.: Towards a logic of argumentation. In: Hüllermeier, E., et al. (eds.) Scalable Uncertainty Management 2012, LNCS 7520, pp. 558–565. Springer, Berlin (2012)

  4. Amgoud, L., Prade, H.: A formal concept view of formal argumentation. In: van der Gaag, L.C. (ed.) Symbolic and Quantiative Approaches to Reasoning with Uncertainty (ECSQARU 2013), LNCS 7958, pp. 1–12. Springer, Berlin (2013)

  5. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall, New York (1990)

    MATH  Google Scholar 

  6. Bernhard, P.: Visualizations of the square of opposition. Log. Univers. 2, 31–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Springer, Dordrecht (2008)

    Book  MATH  Google Scholar 

  8. Carroll, L.: Symbolic Logic. Edited, Annotations, with and an Introduction by William Warren Bartley III. Clarkson N. Potter, New York (1977)

    Google Scholar 

  9. Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., Blake, A.: Visualizing sets: an empirical comparison of diagram types. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrammatic Representation and Inference, LNCS 8578, pp.146–160. Springer, Berlin (2014)

  10. Cheng, P.: Algebra diagrams: a HANDi introduction. In: Cox, P.T., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS 7352, pp. 178–192. Springer, Berlin (2012)

  11. Ciucci, D.: Orthopairs in the 1960s: historical remarks and new ideas. In: Cornelis, C., et al. (eds.) Rough Sets and Current Trends in Computing (RSCTC 2014), LNCS 8536, pp. 1–12. Springer, Berlin (2014)

  12. Ciucci, D.: Orthopairs and granular computing. Granular Computing 1, 159–170 (2016)

    Article  Google Scholar 

  13. Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) Rough Sets and Knowledge Technology, LNCS 7414, pp. 504–513. Springer, Berlin (2012)

  14. Ciucci, D., Dubois, D., Prade, H.: The structure of oppositions in rough set theory and formal concept analysis – toward a new bridge between the two settings. In: Beierle, C., Meghini, C. (eds.) Foundations of Information and Knowledge Systems (foIKS 2014), LNCS 8367, pp. 154–173. Springer, Berlin (2014)

  15. Ciucci, D., Dubois, D., Prade, H.: Structures of opposition in fuzzy rough sets. Fundamenta Informaticae 142, 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciucci, D., Dubois, D., Prade, H.: Structures of opposition induced by relations. The Boolean and the gradual cases. Ann. Math. Artif. Intell. 76, 351–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P.T., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS 7352, pp. 300–302. Springer, Berlin (2012)

  18. Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer, Basel (2012)

  19. Demey, L.: Interactively illustrating the context-sensitivity of Aristotelian diagrams. In: Christiansen, H., Stojanovic, I., Papadopoulos, G. (eds.) Modeling and using context, LNCS 9405, pp. 331–345. Springer, Berlin (2015)

  20. Demey, L.: Using syllogistics to teach metalogic. Metaphilosophy 48, 575–590 (2017)

    Article  Google Scholar 

  21. Demey, L.: Aristotelian diagrams in the debate on future contingents. Sophia. https://doi.org/10.1007/s11841-017-0632-7 (2018)

  22. Demey, L.: The logical geometry of the cube of opposition in knowledge representation. Manuscript

  23. Demey, L., Smessaert, H.: Logische geometrie en pragmatiek. In: Van De Velde, F., Smessaert, H., Van Eynde, F., Verbrugge, S. (eds.) Patroon en Argument, pp. 553–564. Leuven University Press, Leuven (2014)

  24. Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrammatic Representation and Inference, LNCS 8578, pp. 213–227. Springer, Berlin (2014)

  25. Demey, L., Smessaert, H.: The interaction between logic and geometry in Aristotelian diagrams. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Diagrammatic Representation and Inference, LNCS 9781, pp. 67–82. Springer, Berlin (2016)

  26. Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Log. Univers. 10, 233–292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Demey, L., Smessaert, H.: Shape heuristics in Aristotelian diagrams. In: Kutz, O., Borgo, S., Bhatt, M. (eds.) Shapes 3.0 Proceedings, Workshop Proceedings 1616, pp. 35–45. CEUR, Aachen (2016)

  28. Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. J. Philos. Log. https://doi.org/10.1007/s10992-017-9430-5 (2017)

  29. Demey, L., Smessaert, H.: Logical and geometrical distance in polyhedral Aristotelian diagrams in knowledge representation. Symmetry 9(10), 204 (2017)

    Article  Google Scholar 

  30. Demey, L., Smessaert, H.: Aristotelian and duality relations beyond the square of opposition. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S. Bellucci, F. (eds.) Diagrammatic Representation and Inference, LNCS. Springer, Berlin. Forthcoming

  31. Demey, L., Steinkrüger, P.: De logische geometrie van Johannes Buridanus’ modale achthoek. Tijdschrift voor Filosofie 79, 217–238 (2017)

    Google Scholar 

  32. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  33. Dubois, D., Prade, H.: From blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Univers. 6, 149–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dubois, D., Prade, H.: Formal concept analysis from the standpoint of possibility theory. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) Formal Concept Analysis (ICFCA 2015), LNCS 9113, pp. 21–38. Springer, Berlin (2015)

  35. Dubois, D., Prade, H.: Enric Trillas: a Passion for Fuzzy Sets, SFSC 322, pp. 79–91. Springer, Berlin. In: Magdalena, L., Verdegay, J.L., Esteva, F. (eds.) (2015)

  36. Dubois, D., Prade, H., Rico, A.: The cube of opposition – a structure underlying many knowledge representation formalisms. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2933–2939. AAAI Press, Palo Alto (2015)

  37. Dubois, D., Prade, H., Rico, A.: The cube of opposition and the complete appraisal of situations by means of Sugeno integrals. In: Esposito, F., et al. (eds.) Foundations of Intelligent Systems (ISMIS 2015), LNCS 9384, pp. 197–207. Springer, Berlin (2015)

  38. Dubois, D., Prade, H., Rico, A.: Graded cubes of opposition and possibility theory with fuzzy events. Int. J. Approx. Reason. 84, 168–185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dubois, D., Prade, H., Rico, A.: Organizing families of aggregation operators into a cube of opposition. In: Kacprzyk, J., Filev, D., Beliakov, G. (eds.) Granular, Soft and Fuzzy Approaches for Intelligent Systems, pp. 27–45. Springer, Berlin (2017)

  40. Fish, A., Flower, J.: Euler diagram decomposition. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrammatic Representation and Inference, LNCS 5223, pp. 28–44. Springer, Berlin (2008)

  41. Fish, A., Khazaei, B., Roast, C.: User-comprehension of Euler diagrams. J. Vis. Lang. Comput. 22, 340–354 (2011)

    Article  Google Scholar 

  42. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  43. Flower, J., Stapleton, G., Rodgers, P.: On the drawability of 3D Venn and Euler diagrams. J. Vis. Lang. Comput. 25, 186–209 (2014)

    Article  Google Scholar 

  44. García-Cruz, J.D.: The hypercube of dynamic opposition. In: Béziau, J.-Y., Buchsbaum, A., Correia, M. (eds.) 5th World Congress on the Square of Opposition, pp. 25–27, Santiago, Pontificia Universidad Católica de Chile (2016)

  45. Gilio, A., Pfeifer, N., Sanfilippo, G.: Transitivity in coherence-based probability logic. J. Appl. Log. 14, 46–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer, New York (2009)

    MATH  Google Scholar 

  47. Glöckner, I.: Fuzzy Quantifiers. Springer, Berlin (2006)

    MATH  Google Scholar 

  48. Gottfried, B.: The diamond of contraries. J. Vis. Lang. Comput. 26, 29–41 (2015)

    Article  Google Scholar 

  49. Gurr, C.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10, 317–342 (1999)

    Article  Google Scholar 

  50. Her, I.: Description of the f.c.c. lattice geometry through a four-dimensional hypercube. Acta Crystallogr. A 51, 659–662 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago (1989)

    Google Scholar 

  52. Hughes, G.E.: The modal logic of John Buridan. In: Corsi, G., Mangione, C., Mugnai, M. (eds.) Atti del Convegno Internazionale di Storia Della Logica, le Teorie Delle Modalità, pp. 93–111. CLUEB (1987)

  53. Hurley, P.J.: A Concise Introduction to Logic, 11th edn. Wadsworth, Boston (2012)

    Google Scholar 

  54. Kauffman, L.H.: The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing 8, 79–110 (2001)

    Google Scholar 

  55. Klima, G. (ed.): John Buridan, Summulae de Dialectica. Yale University Press, New Haven (2001)

    Google Scholar 

  56. Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. Cognit. Sci. 11, 65–99 (1987)

    Article  Google Scholar 

  57. Lenzen, W.: How to square knowledge and belief. In: Béziau, J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 305–311. Springer, Basel (2012)

  58. Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Log. Univers. 2, 167–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Miclet, L., Prade, H.: Analogical proportions and square of oppositions. In: Laurent, A., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems 2014, Part II, CCIS 442, pp. 324–334. Springer, Berlin (2014)

  60. Moretti, A.: The Geometry of Logical Opposition. PhD thesis, University of Neuchâtel (2009)

  61. Moretti, A.: Was Lewis Carroll an amazing oppositional geometer? History and Philosophy of Logic 35, 383–409 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Murinová, P., Novák, V.: Analysis of generalized square of opposition with intermediate quantifiers. Fuzzy Set. Syst. 242, 89–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Murinová, P., Novák, V.: Graded generalized hexagon in fuzzy natural logic. In: Carvalho, J.P., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems 2016, Part II, CCIS 611, pp. 36–47. Springer, Berlin (2016)

  64. Murinová, P., Novák, V.: Syllogisms and 5-square of opposition with intermediate quantifiers in fuzzy natural logic. Log. Univers. 10, 339–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nagy, B.: Reasoning by intervals. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrammatic Representation and Inference, LNCS 4045, pp. 145–147. Springer, Berlin (2006)

  66. Nagy, B., Strand, R.: Non-traditional grids embedded in \(\mathbb {Z}^{n}\). Int. J. Shape Model. 14, 209–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (Summer 2017 Edition). CSLI, Stanford, CA (2017)

  68. Pellissier, R.: Setting n-opposition. Log. Univers. 2(2), 235–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Peterson, P.: On the logic of “few”, “many”, and “most”. Notre Dame Journal of Formal Logic 20, 155–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  70. Pfeifer, N., Sanfilippo, G.: Probabilistic squares and hexagons of opposition under coherence. Int. J. Approx. Reason. 88, 282–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pfeifer, N., Sanfilippo, G.: Square of opposition under coherence. In: Ferraro, M.B., et al. (eds.) Soft Methods for Data Science, AISC 456, pp. 407–414. Springer, Berlin (2017)

  72. Prade, H., Richard, G.: From analogical proportion to logical proportions. Log. Univers. 7, 441–505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  73. Prade, H., Richard, G.: Picking the one that does not fit – a matter of logical proportions. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13), pp. 392–399. Atlantis Press, Amsterdam (2013)

  74. Prade, H., Richard, G.: On different ways to be (dis)similar to elements in a set. Boolean analysis and graded extension. In: Carvalho, J.P., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems 2016, Part II, CCIS 611, pp. 605–618. Springer, Berlin (2016)

  75. Prade, H., Richard, G.: From the structures of opposition between similarity and dissimilarity indicators to logical proportions. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Representation and reality in humans, other living organisms and intelligent machines, pp. 279–299. Springer, Berlin (2017)

  76. Read, S.: John Buridan’s theory of consequence and his octagons of opposition. In: Béziau, J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 93–110. Springer (2012)

  77. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  78. Sauriol, P.: Remarques sur la théorie de l’hexagone logique de blanché. Dialogue 7, 374–390 (1968)

    Article  Google Scholar 

  79. Slater, H.: Back to aristotle! Logic and Logical Philosophy 21, 275–283 (2011)

    MathSciNet  MATH  Google Scholar 

  80. Smessaert, H.: On the 3D visualisation of logical relations. Log. Univers. 3, 303–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Smessaert, H.: Boolean differences between two hexagonal extensions of the logical square of oppositions. In: Cox, P.T., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS 7352, pp. 193–199. Springer, Berlin (2012)

  82. Smessaert, H., Demey, L.: Logical and geometrical complementarities between Aristotelian diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrammatic Representation and Inference, LNCS 8578, pp. 246–260. Springer, Berlin (2014)

  83. Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Log. Lang. Inf. 23, 527–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  84. Smessaert, H., Demey, L.: Béziau’s contributions to the logical geometry of modalities and quantifiers. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic, pp. 475–493. Springer, Basel (2015)

  85. Smessaert, H., Demey, L.: Visualising the Boolean algebra \(\mathbb {B}_{4}\) in 3D. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Diagrammatic Representation and Inference, LNCS 9781, pp. 289–292. Springer, Berlin (2016)

  86. Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry. In: Béziau, J.-Y., Basti, G. (eds.) The Square of Opposition: a Cornerstone of Thought, pp. 197–214. Springer, Basel (2017)

  87. Strand, R.: Weighted distances based on neighborhood sequences for point-lattices. Discret. Appl. Math. 157, 641–652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412, 1350–1363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Trillas, E., Seising, R.: Turning around the ideas of ‘meaning’ and ‘complement’. In: Collan, M., Fedrizzi, M., Kacprzyk, J. (eds.) Fuzzy Technology, SFSC 335, pp. 3–31. Springer, Berlin (2016)

  90. Tversky, B.: Prolegomenon to scientific visualizations. In: Gilbert, J.K. (ed.) Visualization in Science Education, pp. 29–42. Springer, Dordrecht (2005)

  91. Tversky, B.: Visualizing thought. Top. Cogn. Sci. 3, 499–535 (2011)

    Article  Google Scholar 

  92. Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: a diagrammatic reasoner for spider diagrams. In: Cox, P.T., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS 7352, pp. 163–177. Springer, Berlin (2012)

  93. Čomić, L., Nagy, B.: A topological 4-coordinate sytem for the face centered cubic grid. Pattern Recogn. Lett. 83, 67–74 (2016)

    Article  Google Scholar 

  94. Yao, Y.: Duality in rough set theory based on the square of opposition. Fundamenta Informaticae 127, 49–64 (2013)

    MathSciNet  MATH  Google Scholar 

  95. Yue, X., Chen, Y., Miao, D., Qian, J.: Tri-partition neighborhood covering reduction for robust classification. Int. J. Approx. Reason. 83, 371–384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  96. Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Peirce, pp. 334–386. Indiana University Press, Bloomington (1997)

Download references

Acknowledgements

A preliminary version of this paper was presented at the Diagrams 2016 conference in Philadelphia, PA, USA. We would like to thank the audience of that presentation, as well as Koen Roelandt, Margaux Smets and two anonymous reviewers of this journal for their useful feedback. The first author is financially supported by a Postdoctoral Fellowship of the Research Foundation–Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Demey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demey, L., Smessaert, H. Geometric and cognitive differences between logical diagrams for the Boolean algebra \(\mathbb {B}_{4}\). Ann Math Artif Intell 83, 185–208 (2018). https://doi.org/10.1007/s10472-018-9585-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9585-y

Keywords

Mathematics Subject Classification (2010)

Navigation