Skip to main content
Log in

Minkowski products of unit quaternion sets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The Minkowski product of unit quaternion sets is introduced and analyzed, motivated by the desire to characterize the overall variation of compounded spatial rotations that result from individual rotations subject to known uncertainties in their rotation axes and angles. For a special type of unit quaternion set, the spherical caps of the 3-sphere S3 in \(\mathbb {R}^{4}\), closure under the Minkowski product is achieved. Products of sets characterized by fixing either the rotation axis or rotation angle, and allowing the other to vary over a given domain, are also analyzed. Two methods for visualizing unit quaternion sets and their Minkowski products in \(\mathbb {R}^{3}\) are also discussed, based on stereographic projection and the Lie algebra formulation. Finally, some general principles for identifying Minkowski product boundary points are discussed in the case of full-dimension set operands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann, S.L.: Rotations, Quaternions, and Double Groups. Dover Publications (reprint), Mineola (1986)

    MATH  Google Scholar 

  2. Du Val, P.: Homographies, Quaternions, and Rotations. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  3. Farouki, R.T., Gu, W., Moon, H.P.: Minkowski roots of complex sets. In: Geometric Modeling and Processing 2000, pp. 287–300. IEEE Computer Society Press (2000)

  4. Farouki, R.T., Han, C.Y.: Computation of Minkowski values of polynomials over complex sets. Numer. Algor. 36, 13–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farouki, R.T., Han, C.Y.: Solution of elementary equations in the Minkowski geometric algebra of complex sets. Adv. Comput. Math. 22, 301–323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farouki, R.T., Moon, H.P., Ravani, B.: Algorithms for Minkowski products and implicitly–defined complex sets. Adv. Comput. Math. 13, 199–229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farouki, R.T., Moon, H.P., Ravani, B.: Minkowski geometric algebra of complex sets. Geom. Dedicata. 85, 283–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farouki, R.T., Pottmann, H.: Exact Minkowski products of N complex disks. Reliab. Comput. 8, 43–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghosh, P.K.: A mathematical model for shape description using Minkowski operators. Comput. Vis. Graph. Image Process. 44, 239–269 (1988)

    Article  Google Scholar 

  10. Gilmore, R.: Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Hartquist, E.E., Menon, J.P., Suresh, K., Voelcker, H.B., Zagajac, J.: A computing strategy for applications involving offsets, sweeps, and Minkowski operators. Comput. Aided Des. 31, 175–183 (1999)

    Article  MATH  Google Scholar 

  12. Kaul, A.: Computing Minkowski Sums. PhD Thesis, Columbia University (1993)

  13. Kaul, A., Farouki, R.T.: Computing Minkowski sums of plane curves. Int. J. Comput. Geom. Appl. 5, 413–432 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaul, A., Rossignac, J.R.: Solid interpolating deformations: Construction and animation of PIP. Comput. Graph. 16, 107–115 (1992)

    Article  Google Scholar 

  15. Middleditch, A.E.: Applications of a vector sum operator. Comput. Aided Des. 20, 183–188 (1988)

    Article  MATH  Google Scholar 

  16. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57, 447–495 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moore, R.E.: Interval Analysis. Prentice–Hall, Englewood Cliffs (1966)

    Google Scholar 

  18. Moore, R.E: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  19. Selig, J.M.: Geometrical Methods in Robotics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  20. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

Download references

Funding

The second and fourth authors are partly supported by the Italian Ministry of Education (MIUR) through Finanziamento Premiale FOE 2014 “Splines for accUrate NumeRics: adaptIve models for Simulation Environments” and by Istituto Nazionale di Alta Matematica (INdAM) through Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rida T. Farouki.

Additional information

Communicated by: Axel Voigt

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouki, R.T., Gentili, G., Moon, H.P. et al. Minkowski products of unit quaternion sets. Adv Comput Math 45, 1607–1629 (2019). https://doi.org/10.1007/s10444-019-09687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09687-9

Keywords

Mathematics Subject Classification (2010)

Navigation