Skip to main content
Log in

Solving a real-world train-unit assignment problem

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We face a real-world train-unit assignment problem for an operator running trains in a regional area. Given a set of timetabled train trips, each with a required number of passenger seats, and a set of train units, each with a given number of available seats, the problem calls for an assignment of the train units to the trips, possibly combining more than one train unit for a given trip, that fulfills the seat requests. With respect to analogous case studies previously faced in the literature, ours is characterized by the fairly large number of distinct train-unit types available (in addition to the fairly large number of trips to be covered). As a result, although there is a wide margin of improvement over the solution used by the practitioners (as our results show), even only finding a solution of the same value is challenging in practice. We present a successful heuristic approach, based on an ILP formulation in which the seat requirement constraints are stated in a “strong” form, derived from the description of the convex hull of the variant of the knapsack polytope arising when the sum of the variables is restricted not to exceed two. Computational results on real-world instances are reported, showing the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbink E.W.J., van den Berg B.W.V., Kroon L.G., Salomon M.: Allocation of railway rolling stock for passenger trains. Transp. Sci. 38, 33–41 (2004)

    Article  Google Scholar 

  2. Alfieri A., Groot R., Kroon L.G., Schrijver A.: Efficient circulation of railway rolling stock. Transp. Sci. 40, 378–391 (2006)

    Article  Google Scholar 

  3. Ben-Khedher N., Kintanar J., Queille C., Stripling W.: Schedule optimization at SNCF: from conception to day of departure. Interfaces 28, 6–23 (1998)

    Article  Google Scholar 

  4. Bonomo F., Durán G., Marenco J.: Exploring the complexity boundary between coloring and list-coloring. Electron. Notes Discret. Math. 25, 41–47 (2006)

    Article  Google Scholar 

  5. Brucker J., Hurink J.L., Rolfes T.: Routing of railway carriages. J. Glob. Optim. 27, 313–332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bussieck M.R., Winter T., Zimmermann U.T.: Discrete optimization in public rail transport. Math. Program. 79, 415–444 (1997)

    MathSciNet  Google Scholar 

  7. Cacchiani, V., Caprara, A., Maróti, G., Toth, P.: On Integer Polytopes with Few Nonzero Vertices, Research Report OR/09/1 DEIS. http://www.or.deis.unibo.it/alberto/smallsupp.pdf (2009)

  8. Caprara A., Kroon L., Monaci M., Peeters M., Toth P.: Passenger Railway Optimization. In: Barnhart, C., Laporte, G. (eds) Handbooks in OR & MS, vol. 14, Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Carpaneto D., Dell’Amico M., Fischetti M., Toth P.: A branch and bound algorithm for the multiple-depot vehicle scheduling problem. Networks 19, 531–548 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cook W.J., Cunningham W.H., Pulleyblank W.R., Schrijver A.: Combinatorial Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Cordeau J.-F., Toth P., Vigo D.: A survey of optimization models for train routing and scheduling. Transp. Sci. 32, 380–404 (1998)

    Article  MATH  Google Scholar 

  12. Cordeau J.-F., Soumis F., Desrosiers J.: A Benders decomposition approach for the locomotive and car assignment problem. Transp. Sci. 34, 133–149 (2000)

    Article  MATH  Google Scholar 

  13. Cordeau J.-F., Soumis F., Desrosiers J.: Simultaneous assignment of locomotives and cars to passenger trains. Oper. Res. 49, 531–548 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cordeau J.-F., Desaulniers G., Lingaya N., Soumis F., Desrosiers J.: Simultaneous locomotive and car assignment at VIA rail Canada. Transp. Res. 35, 767–787 (2002)

    Article  Google Scholar 

  15. Desrosiers J., Dumas Y., Solomon M.M., Soumis F. et al.: Time Constrained Routing and Scheduling. In: Ball, M.O. (eds) Handbooks in OR & MS, vol. 8, pp. 35–139. Elsevier, Amsterdam (1995)

    Google Scholar 

  16. Fioole P.-J., Kroon L.G., Maróti G., Schrijver A.: A rolling stock circulation model for combining and splitting of passenger trains. Eur. J. Oper. Res. 174, 1281–1297 (2006)

    Article  MATH  Google Scholar 

  17. Garey M.R., Johnson D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    MATH  Google Scholar 

  19. Hadjar A., Marcotte O., Soumis F.: A branch-and-cut algorithm for the multiple depot vehicle scheduling problem. Oper. Res. 54, 130–149 (2006)

    Article  MATH  Google Scholar 

  20. Huisman D., Kroon L.G., Lentink R.M., Vromans M.J.C.M.: Operations research in passenger railway transportation. Stat. Neerland. 59, 467–497 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lingaya N., Cordeau J.-F., Desaulniers G., Desrosiers J., Soumis F.: Operational Car Assignment at VIA Rail Canada. Transp. Res. 36, 755–778 (2002)

    Article  Google Scholar 

  22. Martello S., Toth P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  23. Peeters M., Kroon L.G.: Circulation of railway rolling stock: a branch-and-price approach. Comput. Oper. Res. 35, 538–556 (2008)

    Article  MATH  Google Scholar 

  24. Rouillon S., Desaulniers G., Soumis F.: An extended branch-and-bound method for locomotive assignment. Transp. Res. 40, 404–423 (2006)

    Article  Google Scholar 

  25. Schrijver A.: Minimum circulation of railway stock. CWI Q. 6, 205–217 (1993)

    MATH  Google Scholar 

  26. Ziarati K., Soumis F., Desrosiers J., Solomon M.M.: A branch-first, cut-second approach for locomotive assignment. Manag. Sci. 45, 1156–1168 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Cacchiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacchiani, V., Caprara, A. & Toth, P. Solving a real-world train-unit assignment problem. Math. Program. 124, 207–231 (2010). https://doi.org/10.1007/s10107-010-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0361-y

Keywords

Mathematics Subject Classification (2000)

Navigation